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Overview
Ongoing Machine Learning Efforts

Micro-Bunching Control at KARA using Reinforcement Learning

Feedback Design and Simulations (PhD thesis Physics, Tobias Boltz)

RL in Simulations (Master’s thesis Computer Science, Melvin Klein)

Hardware Implementation (PhD thesis Electronics, Weijia Wang)

Optimization of Injection Efficiency at KARA

Bayesian Optimization using Gaussian Processes (Master’s thesis
Physics, Chenran Xu)
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Micro-Bunching Control
Micro-Bunching and CSR Power Fluctuations
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micro-structure dynamics

Simulation code: Parallelized VFP solver Inovesa (https://github.com/Inovesa/Inovesa)
Schönfeldt, P. et al., Phys. Rev. Accel. Beams 20 (2017)
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Micro-Bunching Control
CSR Power Spectrogram: Dependency on Bunch Current
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Micro-Bunching Control
CSR self-interaction
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Micro-Bunching Control
. . . via Dynamic RF Amplitude Modulation
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Micro-Bunching Control
RL in a Nutshell: Learning from Interaction

mathematical foundation: Markov decision process (MDP)

“The future is independent of the past given the present.”

start

goal

environment

agent

action

state, reward

∆t

policy: defines agent’s behavior

goal: maximize cumulative
reward
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Micro-Bunching Control
RL – developing some Intuition . . .

goal-directed learning from interaction (trial-and-error search)

finding a sequence of actions (e.g. moves in a game)

taken actions affect the following states (e.g. board positions)

1

1
A A

2

2

B B

3

3

C C

4

4

D D

5

5

E E

6

6

F F

7

7

G G

8

8

H H

9

9

I I

10

10

J J

11

11

K K

12

12

L L

13

13

M M

14

14

N N

15

15

O O

16

16

P P

17

17

Q Q

18

18

R R

19

19

S S

37

cartpole balancing
(a textbook RL problem)
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Micro-Bunching Control
Feedback Scheme

goal: control micro-bunching
(longitudinal beam dynamics)
to optimize emitted CSR

proof of principle:
control in simulation (Inovesa)

implementation:
THz diagnostics (KAPTURE) and RF system at KARA

CSR Signal

Agent

RF System
reward state

action
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Micro-Bunching Control
Observation, Reward and Action

observation: state of electron bunch / micro-bunching dynamics

1) in theory/simulations: longitudinal charge distribution

2) measurable: CSR power signal⇒ feature vector encoding the state

reward function: optimization of emitted CSR signal
R = w1µCSR − w2σCSR with w1,w2 > 0
⇒ maximize µCSR, minimize σCSR!

action: RF amplitude modulation
dynamically adjust amplitude & frequency
⇒ counteract perturbation by CSR
⇒ include RF phase?
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Micro-Bunching Control
. . . behind the curtain: Actor-Critic System using NNs
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q̂(s, a)

critic
network

evaluation and update based on
estimation of expected

reward q̂(s, a)

chosen action
to be evaluated

state s = (s1, s2, s3, s4)T

action a = (a1, a2, a3)T

e.g. DDPG algorithm*
(Deep Deterministic Policy Gradient)

*Continuous control with deep reinforcement learning, Lillicrap, T.P. et al. (2015), https://arxiv.org/abs/1509.02971
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Micro-Bunching Control
Summary and Status Quo

goal: control micro-bunching⇒ optimize CSR emission

CSR self-interaction: perturbation is dependent on the state of the
micro-bunching dynamics
⇒ countermeasure should be state-dependent as well!

CSR wake potential causes perturbation of effective restoring force
⇒ compensate via dynamic RF amplitude modulation scheme

interaction with the bunch changes the micro-bunching dynamics
⇒ sequence of actions is required (deal with consequences)

Status Quo

ongoing efforts to train an RL agent on simulation data

FPGA development to meet required time constraints

connection of THz detectors with BBB system at KARA
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Optimization of Injection
Automation of Parameter Tuning

injection rate from booster at KARA is rather low

manual trial-and-error tuning of injection is time consuming and might
not result in the optimal condition

⇒ application of Bayesian optimization

Relation to Reinforcement Learning

trial-and-error learning paradigm

stationary optimization (not a sequence of actions)

elementary sub-problem in RL (multi armed bandit problem)

⇒ similar approach to quadrupole tuning at LCLS II1 and SwissFEL2

1McIntire, M.W. et al. (2016), IPAC16-WEPOW055 2Kirschner, J. et al. (2019), https://arxiv.org/abs/1902.03229
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Optimization of Injection
Bayesian Optimization using Gaussian Processes (UCB)
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Optimization of Injection
First Results on Simulations
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2 parameters: bump orbit (combined kicker strength), injection angle (septum strength)
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Optimization of Injection
Summary and Outlook

goal: automatic tuning of injection parameters

Bayesian optimization using Gaussian Processes performs reasonably
well on simulations (with 2-3 parameters)

Outlook

adding more parameters, e.g. corrector magnets

apply algorithm at the real machine, integrate intro control system

benchmark with other algorithms: random search, genetic algorithm,
gradient based, . . .
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