KIT

Karlsruhe Institute of Technology

Machine Learning Applications at KARA, KIT

Tobias Boltz on behalf of the KIT team | December 3, 2019

Laboratory for Applica

KIT — The Research University in the Helmholtz Association



http://www.kit.edu

Overview ﬂ(“

Ongoing Machine Learning Efforts

Micro-Bunching Control at KARA using Reinforcement Learning
a Feedback Design and Simulations (PhD thesis Physics, Tobias Boltz)
m RL in Simulations (Master’s thesis Computer Science, Melvin Klein)
a Hardware Implementation (PhD thesis Electronics, Weijia Wang)

Optimization of Injection Efficiency at KARA

a Bayesian Optimization using Gaussian Processes (Master’s thesis
Physics, Chenran Xu)
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Micro-Bunching Control

Micro-Bunching and CSR Power Fluctuations

micro-structure dynamics
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Simulation code: Parallelized VFP solver Inovesa (https://github.com/Inovesa/Inovesa)

Schonfeldt, P. et al., Phys. Rev. Accel. Beams 20 (2017)
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https://github.com/Inovesa/Inovesa

Micro-Bunching Control
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CSR Power Spectrogram: Dependency on Bunch Current

measurement simulation
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Micro-Bunching Control

CSR self-interaction
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Micro-Bunching Control ﬂ(“

...via Dynamic RF Amplitude Modulation
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Micro-Bunching Control A\K“‘

RL in a Nutshell: Learning from Interaction

® mathematical foundation: Markov decision process (MDP)
“The future is independent of the past given the present.”

policy: defines agent’s behavior state, reward
goal: maximize cumulative environment
reward
start
EL N
goal
agent @
actlon
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Micro-Bunching Control ﬂ(“

RL — developing some Intuition . ..

a goal-directed learning from interaction (trial-and-error search)
a finding a sequence of actions (e.g. moves in a game)
m taken actions affect the following states (e.g. board positions)
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Micro-Bunching Control A\K“

Feedback Scheme
CSR Signal

goal: control micro-bunching
(longitudinal beam dynamics)
to optimize emitted CSR

reward state

proof of principle:
control in simulation (Inovesa)

. . action
implementation:

THz diagnostics (KAPTURE) and RF system at KARA
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Micro-Bunching Control
Observation, Reward and Action

m observation: state of electron bunch / micro-bunching dynamics
1) in theory/simulations: longitudinal charge distribution

2) measurable: CSR power signal = feature vector encoding the state

m reward function: optimization of emitted CSR signal

R = wipucsr — Waocsr  With wy, we >0
= maximize ucsg, minimize ocsp! =

T

a action: RF amplitude modulation Lo
dynamically adjust amplitude & frequency - P

= counteract perturbation by CSR F-

= include RF phase?
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Micro-Bunching Control A[{]]

... behind the curtain: Actor-Critic System using NNs T

evaluation and update based on
estimation of expected
reward g(s, a)

actor \
network chosen action
to be evaluated
] i@ d(s,a)
state s = (s1, Sz, S3, Sa)
action a = (ar, a, as)"
. critic
e.g. DDPG algorithm*
9 9 network

(Deep Deterministic Policy Gradient)

*Continuous control with deep reinforcement learning, Lillicrap, T.P. et al. (2015), https://arxiv.org/abs/1509.02971

Tobias Boltz — Machine Learning Applications at KARA | LAS, KIT December 3, 2019 11/16
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Micro-Bunching Control ﬂ(“

Summary and Status Quo

a goal: control micro-bunching =- optimize CSR emission

m CSR self-interaction: perturbation is dependent on the state of the
micro-bunching dynamics
= countermeasure should be state-dependent as well!

m CSR wake potential causes perturbation of effective restoring force
= compensate via dynamic RF amplitude modulation scheme

m interaction with the bunch changes the micro-bunching dynamics
= sequence of actions is required (deal with consequences)
Status Quo
a ongoing efforts to train an RL agent on simulation data
a FPGA development to meet required time constraints
a connection of THz detectors with BBB system at KARA
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Optimization of Injection ﬂ(“

Automation of Parameter Tuning

a injection rate from booster at KARA is rather low

® manual trial-and-error tuning of injection is time consuming and might
not result in the optimal condition

= application of Bayesian optimization

Relation to Reinforcement Learning
a trial-and-error learning paradigm
m stationary optimization (not a sequence of actions)
m elementary sub-problem in RL (multi armed bandit problem)

= similar approach to quadrupole tuning at LCLS II' and SwissFEL?

"Mclntire, M.W. et al. (2016), IPAC16-WEPOW055 2Kirschner, J. et al. (2019) https://arxiv.org/abs/1902.03229
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Optimization of Injection ﬂ(“

Bayesian Optimization using Gaussian Processes (UCB)

T T
—— ground truth
—— GP posterior mean
[C1+/- sigma
training data
x new UCB acquisition | |

output
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Optimization of Injection IT

First Results on Simulations

grid scan GP posterior mean
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2 parameters: bump orbit (combined kicker strength), injection angle (septum strength)
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Optimization of Injection A\K“

Summary and Outlook

a goal: automatic tuning of injection parameters

m Bayesian optimization using Gaussian Processes performs reasonably
well on simulations (with 2-3 parameters)

Outlook
m adding more parameters, e.g. corrector magnets

m apply algorithm at the real machine, integrate intro control system

a benchmark with other algorithms: random search, genetic algorithm,
gradient based, ...
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