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CMS Experiment at the LHC collider

• CMS collaboration ~4000 physicist worldwide

• Machine Learning and Deep Learning techniques are 
used for a long time in High Energy Physics

• Domain specific tools, e.g. TMVA, mainly BDT
• In recent years drift to common data science tools,

e.g. Tensorflow
• CERN works as hub for the exchange of knowledge and industry 

contacts

• IML - Inter-Experimental LHC Machine Learning Working Group

• Monthly meetings
• Yearly workshops: Tutorials; industry sessions, Google, Nvidia etc.

• CERN openLab, especially for industry contacts and projects

• CMS ML forum with monthly meeting
(Exchange, expert advice and control)  

CMS Group HH: O(102)

D. Krücker
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HEP traditionally uses full simulation of 
the analysis process:
Physics ⟶ Detector/Electronics ⟶
Reconstruction ⟶ Analyses
(Digital twin)
⟹ We can train on simulation
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Overview

CMS is very active in applying Machine Learning and 
especially Deep Learning to a variety of subjects

• About ~25 dedicated ML contributions on 
conferences in 2019-present (not including physics 
analyses)

• Annual dedicated CMS Machine Learning 
workshops 

• ML is transforming the field and the traditional 
workflows

• New tools and new terminology

D. Krücker

CMS activities

Main fields of applications

• Object tagging and object calibration
especially Jets and taus are flagship applications

• Physics analyses

• In addition

• Triggers (e.g.: NN on FPGAs)

• Reconstruction/Calibration
• Fast Simulation
⟶ GANs

• Data Quality Monitoring

• Computing workflows

Disclaimer: some of the following  
slides are collect from other talks 
for illustration.
Here, I will not explain all details.



Jet Tagging



Page 6

DeepJet
The latest approach on b-quark jet tagging

CMS uses a Particle Flow approach

• Identify each particle by the combined information 
of all sub-detector

• combine to jets of particles

Jet identification had been one of the first application of 
Deep Learning in HEP

• b-quark jets vs g/u/d/s-jets etc.
• The classical approach looks

for secondary vertices
• There is plenty of information

in the correlation between
the individual tracks 
and vertices and 
global event
characteristics

Number of tracks changes from 
collision to collision 
⟶ input of changing length, 
solution
• Recurrent networks (RNN)
• Convolution NNs (CNN)
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Evolution of CMS b-tagging

• 2015 handcrafted CSVv2(nn) and cMVAv2(BDT)

• Mainly the same information

• 2017 deepCSV

• mid 2017 deepJet (DeepFlavour)

• The gain is due to the usage of all available particle 
information in a deep network  

Introduction | D. Krücker

A short history (for more details M. Verzetti ML4Jets WS 2018)

CMS DP-2017/013

deepCSV

deepJet

see next page

Steady 
development of 
DL taggers over 
the last 4 years

https://indico.cern.ch/event/745718/contributions/3146638/attachments/1753044/2841151/ML4Jets2018.pdf
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Complex machinery 
with ~500k of parameters
613 input features
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Training DeepJet

Introduction | D. Krücker

Big data

Training needs large amount of data
Training on simulation data,
Good but smaller performance on 
real data
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Top etc. tagging

• A top decays into a b quark and a W ⟶ lep,had

• If the momentum is large the form a common jet

• Boosted topology in fat jets (AK8)

• Top-tagging ⟺ identify such jets

Short Overview | D. Krücker

Highly-boosted top quarks  

DeepAK8
• Up to 100 particles
• Each particle comes with 42 features
• 14 layers is indeed deep
• Up to 7 SV with 7 features
• Trained with 50 million jets
• Residual net (short cuts between layers)

CMS-PAS-JME-18-002

Typical problem how to 
handle a varying number 
of particles, here: 1d CNN

H
, Top, W

, Z, or Q
C

D

https://cds.cern.ch/record/2683870
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Convolution allows to handle a varying number of particle within a jet

Our networks are typically
in the order of 105-106 parameters
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How to feed in a changing number of objects

Many Deep Learning approaches have been 
developed for imaging, i.e. dense regular grid of points; 
or text processing, i.e. sequences

• Not straightforward how to connect to typical HEP 
problems

• Jet images in (𝜂, 𝜙) plane are sparse

• Varying number of particles in cone from jet to jet

• Standard solution so far

• Recurrent nets: pT ordered particles
• Convolution: particles as 1d string of inputs

• New approach: Geometric learning or

• Graph networks
(Hot subject on this year NIPS dozens of papers)

Introduction | D. Krücker

A common subject

• H. Qu and L. Gouskos. 
„ParticleNet: Jet Tagging via Particle Clouds“
https://arxiv.org/abs/1902.08570

• Bsed on Y. Wang et al.
„Dynamic Graph CNN for Learning on Point Clouds“

• M. Fey and J.E. Lenssen. 
„Fast Graph Representation Learning with
PyTorch Geometric“
https://github.com/rusty1s/pytorch_geometric

Our data are not images 
– no regular grid

https://arxiv.org/abs/1902.08570
https://github.com/rusty1s/pytorch_geometric
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EdgeConv network

Introduction | D. Krücker

Particle Cloud

• Compute k-nearest neighbors
graph

• Defines a local neighborhood on which
a convolution operation work

• For the first layer this is the (Δ𝜂, Δ𝜙,pT) plane wrt. jet 
axis 

• Apply EdgeConv, here

• Dynamic Graph CNN 
means the recalculation
of the k-nn in the 𝑥) space
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Tau-lepton tagging

• CMS investigates deep NN for tau-lepton 
identification

• Similar complexity as the shown b tagger

• Here at DESY, we started to investigate a Graph 
Network approach

• Promising results similar performance with a model 
that contains 10 times less parameters

• Time advantage in interference

Introduction | D. Krücker

A newly started project with Graph Networks – no official CMS results yet

~20k parameters

~50k parametersSolves 3 problems:
- varying number of 

features
- representing non-

image-like data
- fast interference 



Physics analyses 

Introduction | D. Krücker
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Searches

Using ML methods (BDTs, NNs) has become the default 
for new analyses 

Two example analyses from DESY

• Supersymmetry

• Higgs 

Introduction | D. Krücker

Examples for ML methods in searches

Please note!

• These are ongoing analyses

• Results are not approved

• Therefore no numbers, no data plots

• Access to data (and simulations) is 
restricted and controlled by the 
collaboration

• CMS has recently relaxed the rules 
under certain conditions (mostly 
driven by possible ML publications)
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Ex.1: Search for supersymmetry in events with one lepton

Introduction | D. Krücker

Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation 
between the lepton and the missing transverse momentum in proton-proton collisions at √s = 13 TeV

• SUSY signal: T1tttt
2 gluinos that decay
to 4 top quarks 
+ 2 neutralinos 

(Dark matter candidate)

• Important SM background
top-anti-top pair (ttbar) with
2 leptons where
one lepton is missed in the reconstruction

published Run II result on 2016 data
Can we do better with a neural network? – Sure,but …

- How to connect the NN response to the observed data to 
estimate the background in the signal region?
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regularisation
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Multiclassification 

• 4 classes

• 3 class represent different backgrounds

• 1 class is the search region
• The simulation is normalized to the data in the 

background classes by solving the equation system

• Creates a nice data/MC agreement -> estimate 
Background in signal region
(not shown here)

• Independent of the signal point

Some results ... | D. Krücker

Data augmented background estimation

Typically, physics analyses itself uses smaller networks
(or BDTs). Main problem here how to calibrate the data 

performance aka data driven background estimation.
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Ex2. How to know what is relevant?

• Complex neural nets do not tell us how they come 
to a decision

• 10th thousands of parameters
• Several dozens of input variables

• Important to understand what is driving the decision

• If the network is just a chain of matrix multiplication and 
function mappings why not just do a Taylor expansion

• arXiv:1512.02479

Short Overview | D. Krücker

Opening the neural net black box in a Higgs search

• Higgs ⟶ 𝜏 𝜏

• Observation published last year 
(CMS) Phys. Lett. B 779 (2018) 283 

• New study with a multiclass NN ongoing

Deep Taylor Decomposition

2nd order Taylor
coefficients as 
sensitivity metric
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production 
modes

cross section

2 hidden layer with 200 nodes each
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Understandable Deep Learning
becomes important if we want to 
claim discoveries



Fast Simulation

Some results ... | D. Krücker
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Computing Load

• The LHC will start its 3rd data taking 
period in 2020

• Already now it is not obvious that the
computing resources scale with the
double amount of data

• The High Luminosity LHC will create a 
10 times larger dataset

• Large datasets implies even larger 
simulation datasets: about 85% CPU 
resources had been used here

• Our fast (parametrized) simulation are 
often not sufficient for ML based 
analyses 

ID. Krücker

From LHC to HL-LHC

CMS Run I Run II Run III HL-LHC
2010-2012 2015-2018 2020-2023? 2026-203x

Int. Lumi 25/fb 150/fb 300/fb 3000/fb
Raw Data 3 PB 36 PB ? ??

PU 35 55 200
New compact (50x smaller) 
data formats are available for 
analyses
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GANs for fast simulation

Some results ... | D. Krücker

And other generative methods

• Several CMS related 
groups studying different 
approaches

• To my knowledge:
No official CMS
approach

• Main interest in HGCAL 
for the HL-LHC 
upgrades

• But also full event
simulation

• GANs based on 
GraphNeural Networks 
for HGCAL (hexagonal 
structures) 

• Reconstruction
1902.07987
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CHEP 2019
Computing in High Energy, 4-8 Nov. Adelaide, Australia 

• CMS ☹

• ATLAS: GANs and VAEs (for electromagnetic calo) (here)

• CERN openlab: 3DGAN (here)

https://indico.cern.ch/event/773049/contributions/3563145/attachments/1937030/3210379/20191104-FCSDNNCaloSim-CHEP_final.pdf
https://indico.cern.ch/event/773049/contributions/3474762/attachments/1937793/3211928/GANsimulation_T2_draft0.pdf

