Generative Models for Calorimeter Showers

Engin Eren, Sascha Diefenbacher Gregor Kasieczka, Frank Gaede Ties Behnke, Anatoli Korol, Erik Buhmann

> AMALEA Project Meeting 03.12.2019

A bit of context..

Main Linac

Page 2

The International Linear Collider

A planned electron-positron collider

Lepton colliders are complementary to the LHC

- cleaner environment, controlled initial state
- coupling to leptons is tested

Advantages of the ILC over other planned electron-positron colliders

- mature technology
- centre-of-mass energy can be tuned and increased:
 250 GeV in initial stage, upgrades to 500 GeV and 1 TeV

STATI .

- polarisation of both beams: *P(e-)=*±80%, *P(e+)=*∓30%
- triggerless operation
- hermeticity of detector down to lowest angles

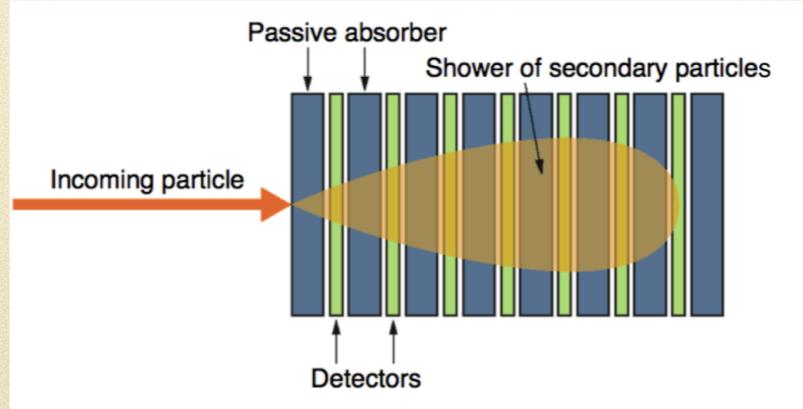
DESY. I Particle Discovery Opportunities at the ILC I M. Habermehl, 12 July 2019

The Slide taken from EPS-HEP 2019 Conference, presentation by M.Habermehl

ILD

Electromagnetic Showers in a HEP Experiment

- Incoming particle initiates the showers and secondary particles are produced
- These secondary particles further produce other particles until the full energy is absorbed



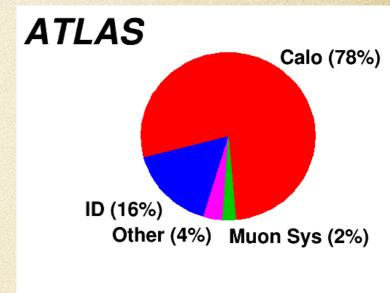
Picture : https://www.hephy.at/fileadmin/user_upload/VO-6-Calorimeters.pdf

This is one type of EM calorimeter : so-called **sampling calorimeter**

Consists of alternating layers of passive absorbers and active detectors
 Only fraction of particle energy deposited

Shower Simulation

Particle showers in the calorimeter are simulated by Geant4
State of the art : First principle physics based simulation
CPU intensive; due to large number of interacting particles



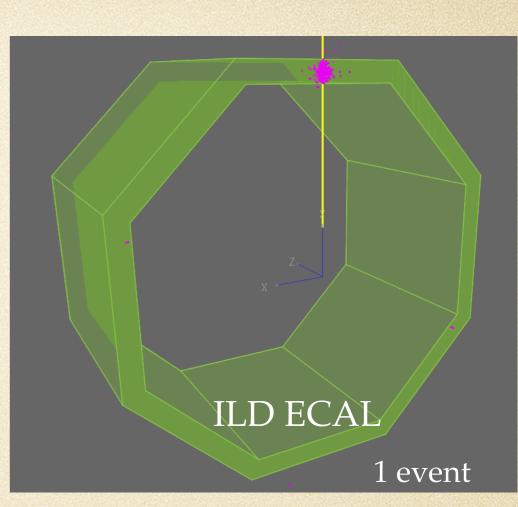
Subdetector CPU fraction for 50 ttbar events MC16 Candidate Release

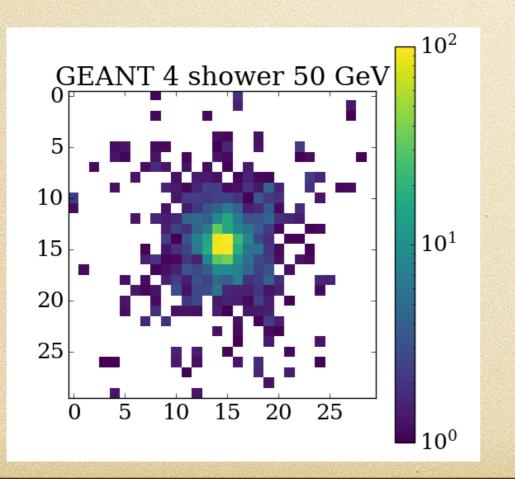
Goal : Reproduce shower simulations with a faster, powerful **generator**; based on state-of-the-art machine learning techniques

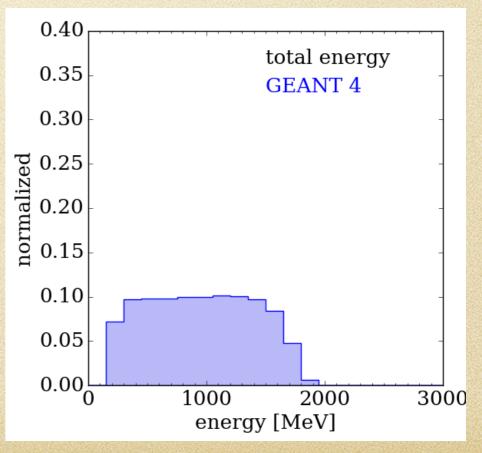
Enormous amounts of CPU time could be potentially saved!

Data

- Simulation is done by Geant4
- Shooting photon perp. to ECAL
 - 85k photon showers
 - Photon energy (10 100 GeV)
 - 30x30x30 pixels
 - For now: Sum along the beam direction
 - → 30 x 30 images



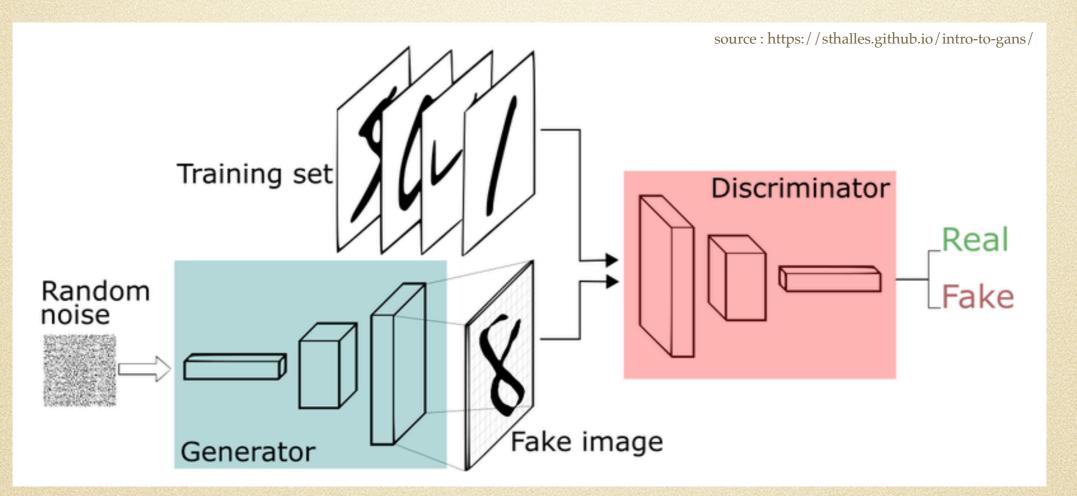




Generative Adversarial Networks (GAN)

Consists of two networks playing min-max game :

- Generator learns to fool the discriminator
- Discriminator learns to distinguish fake or real images
- Continuous feedback between them. Both tries to get better



 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left(\log D(x) \right) + \mathbb{E}_{z \sim z_{data}(z)} \left(\log(1 - D(G(z))) \right)$

Generative Adversarial Networks (GAN)

Consists of two networks playing min-max game :

Ra

no

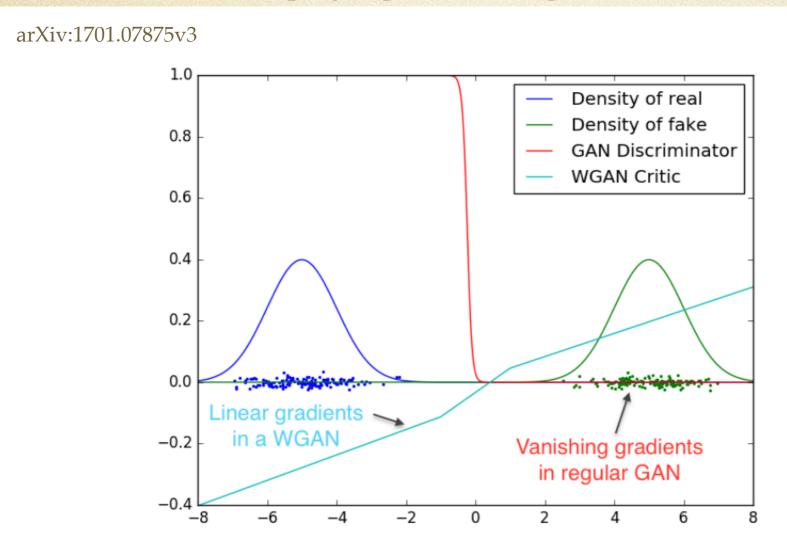


Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians. As we can see, the discriminator of a minimax GAN saturates and results in vanishing gradients. Our WGAN critic provides very clean gradients on all parts of the space.

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \left(\log D(x) \right) + \mathbb{E}_{z \sim z_{data}(z)} \left(\log(1 - D(G(z))) \right)$

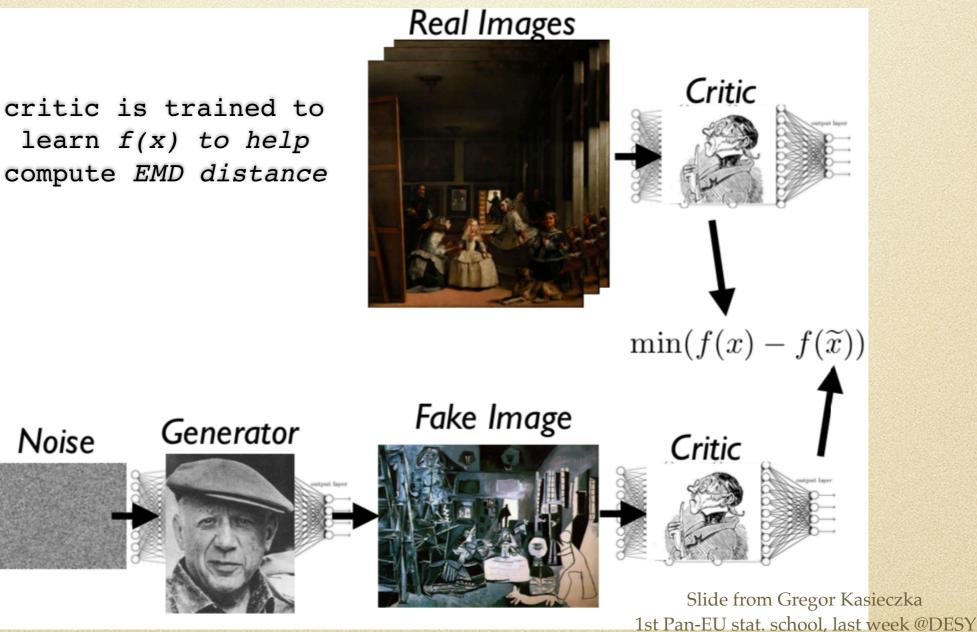
Wasserstein GAN (WGAN)

a GAN trying to minimise EMD between the real and generated distributions:

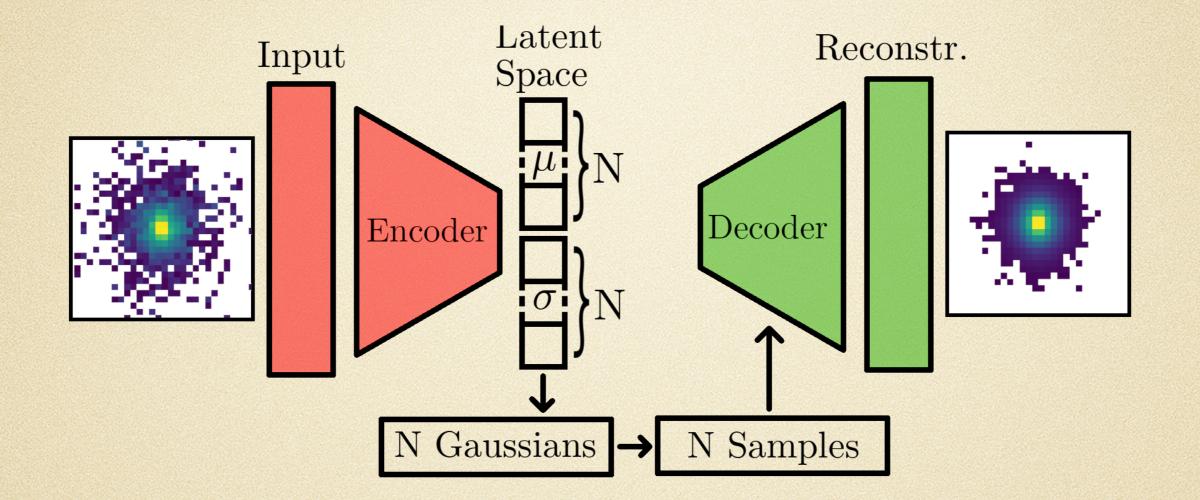
$$\mathrm{EMD}(P,Q) = \sup_{||f||_L \le 1} \left[\mathbb{E}_{x \sim P} f(x) - \mathbb{E}_{x \sim Q} f(x) \right]$$

Kantorovich-Rubinstein duality!

during the training:



Variational AutoEncoders (VAE)



- It learns features by compression and reconstruction
- Introduces latent space consisting of Gaussian distributions
- Regularised latent space allows image generation

$$L = L_{MSE} + L_{Pool_{10\times10,s=5}} + K_{KLD} + L_{MMD_{radian}} + L_{\Delta(E_{incoming}, E_{predict})} + L_{\Delta(E_{sum}, E_{sum-recon})}$$

Training on maxwell cluster with Docker + Singularity

<u>Purpose</u> : To package up an application with all of the parts it needs, such as **libraries and other dependencies**, and ship it all out as **one** package

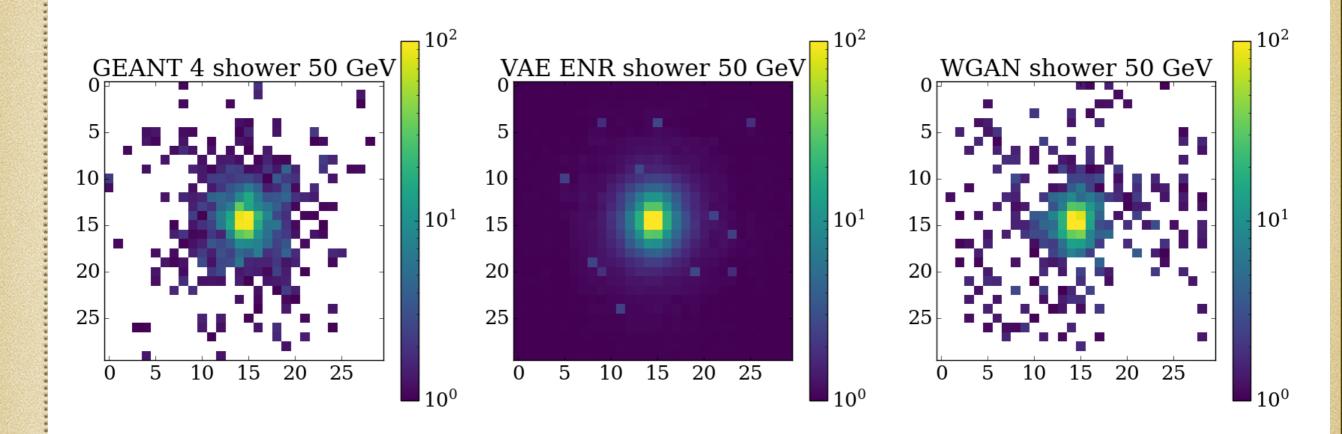
event for great content (e.g., mysql)	10 lines (6 sloc) 208 Bytes
Repositories engineren / pytorch General Tags Builds Timeline Collaborators W S engineren / pytorch This repository does not have a description S Last pushed: 7 days ago	1FROM engineren/pytorch:test11 lines (11 sloc)104 Bytes21numpy3RUN pip installupgrade pip3uproot4Matplotlib5pandas5COPY requirements.txt requirements.txt6scipy6RUN pip installupgradeno-cache-dir7h5py7rm requirements.txt8jupyter9torchsummary10tensorflow9WORKDIR /home10

create an instance singularity instance start --nv <u>docker://engineren/pytorch:custom</u> train-GAN

start the container
singularity run instance: / / train-GAN python train.py

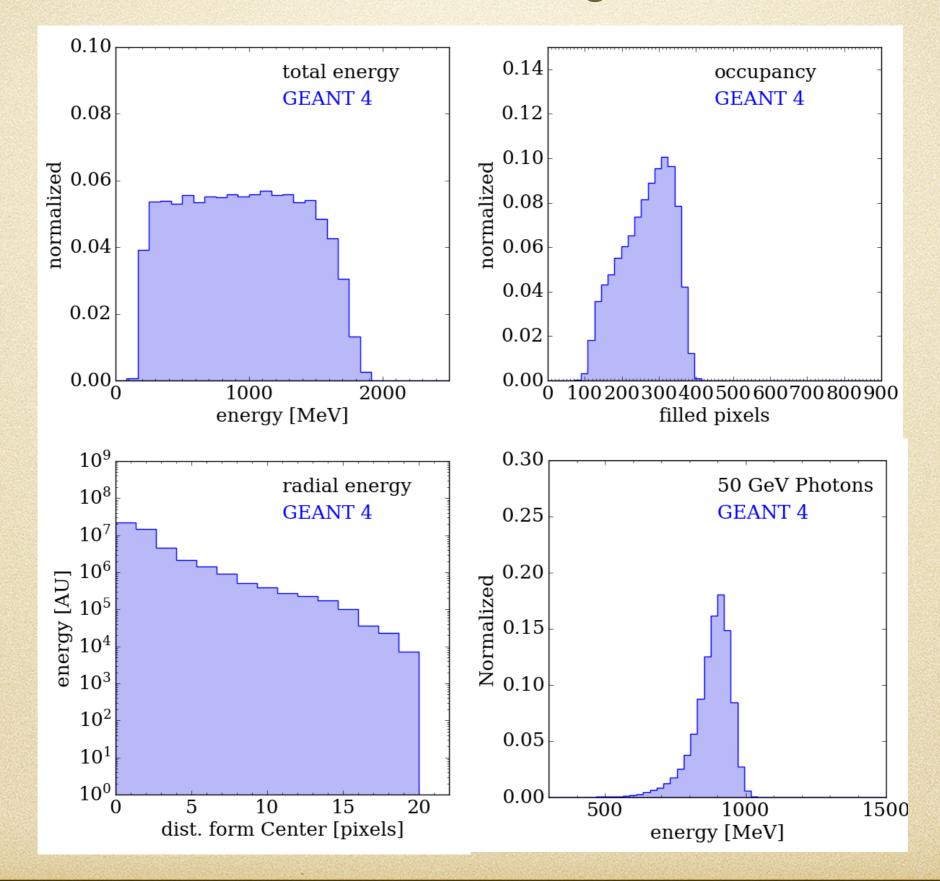
Results

Generated showers : by-eye comparison!



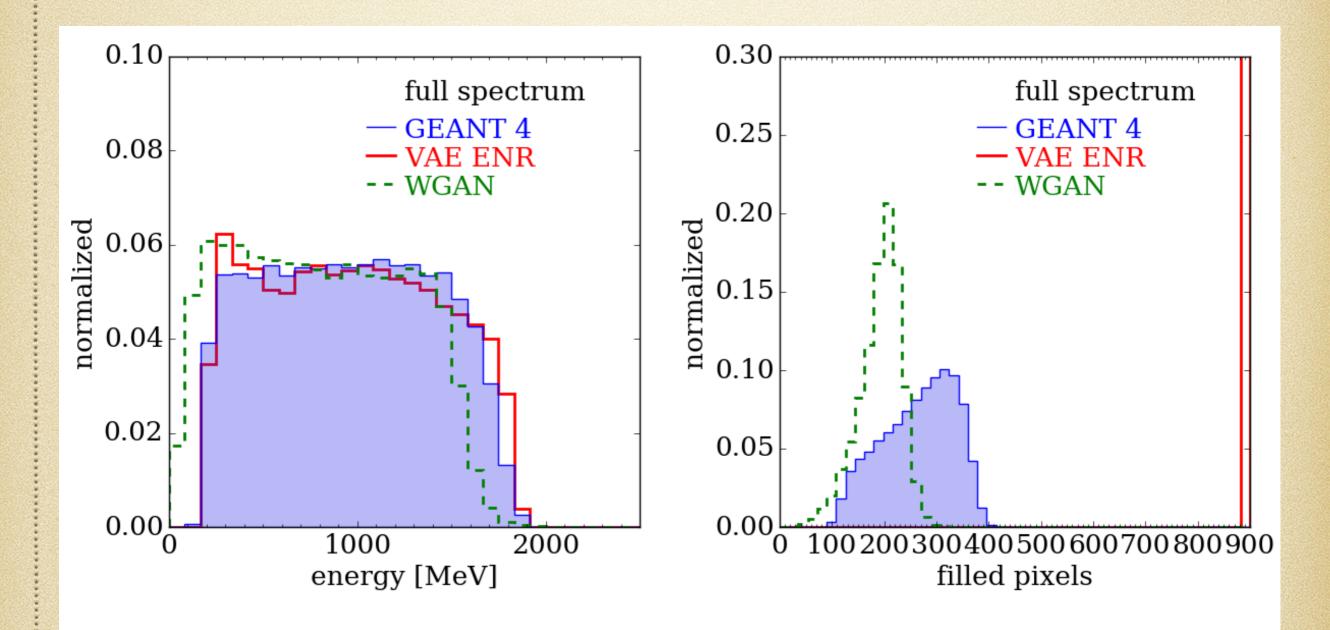
Quality Assurance

Need to ensure that our showers are <u>as good as</u> those from Geant4



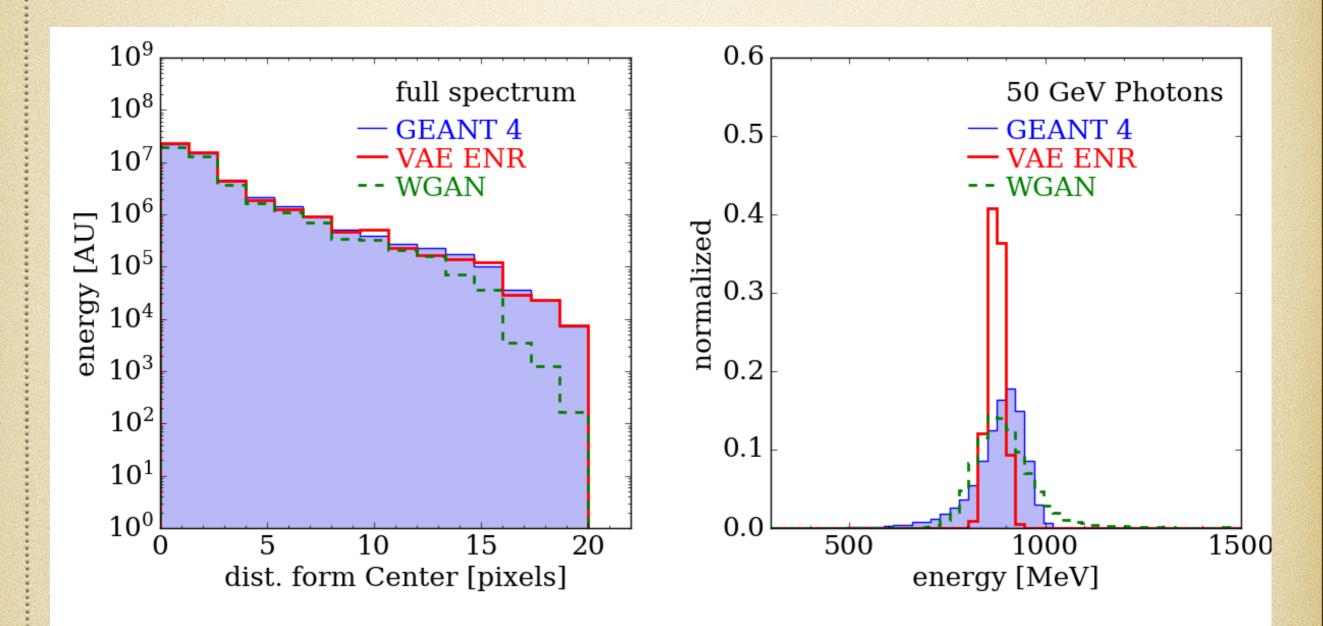
Quality Assurance

Need to ensure that our showers are <u>as good as</u> those from Geant4



Quality Assurance

Need to ensure that our showers are as good as those from Geant4



Conclusion and Outlook

Application of generative models to EM shower simulation in progress!

Outlook :

- Continue to explore shower shape variables.
- Go for 3D showers (i.e images 30x30x30)
- Adversarial VAE
- WGAN-GP and energy regressor
- Add standard (vanilla) GAN

Backup

CaloGAN : Energy distribution of generated showers

