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At the synchrotron radiation source BESSY II (Helmholtz-Zentrum Berlin, HZB)
both the beamline and the machine groups have started working towards setting
up the infrastructure to introduce modern analysis, optimization and
automation in order to improve the performance and the experimental setups.

Our first studies with Machine Learning tools include analysis and prediction
models with real accelerator data as well as first prototypes and use cases for
parameter tuning with (Deep) Reinforcement Learning agents.
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MOTIVATION AND OUTLINE
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Overview: Current state at BESSY II



At the accelerator side: prediction
of beam loss, injection efficiency,
beam lifetime...
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At the beamline side: mapping between
detector images and spectrograms...LET’S FEED A DEEP NETWORK
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... and also beamline raytracing (will be
discussed later)
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Supervised Learning @ BESSY II
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Supervised Learning @ BESSY II



Overview

RLControl - Experiments
Optimization of booster current
Optimization of injection efficiency

Beamline raytracing

Conclusion

References

L. Vera Ramirez, G. Hartmann, AMALEA Meeting, DESY, 02/12/2019 7

Table of Contents



I Deep Deterministic
Policy Gradient
[LHP+16]: Actor-critic
Reinforcement Learning
algorithm for continuous
environments.

I Off-policy data and the
Bellman equation used
to learn the Q-function.

I Q-function used to learn
the policy.

I Approximated with NNs. Figure: From [SB18]
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RLControl - Experiments: DDPG



I Deep Deterministic Policy Gradient: Actor-critic Reinforcement Learning
algorithm for continuous environments.

I Introduced in [LHP+16] with several implementation tricks: delayed target
networks (Qω̃, µθ̃), replay buffer...

I Critic update with stochastic behavior policy β and loss1:

L(ω) = Est∼ρβ , at∼β
[(
Qω(st, at)− (r(st, at) + γQω̃(st+1, µθ̃(st))

)2
]

I Actor update - (off-policy) Deterministic Policy Gradient Theorem
([SLH+14]): for the performance objective Jβ(µθ) = Es∼ρβ

[
Qµθ(s, µθ(s))

]
,

∇θJβ(µθ) ≈ Es∼ρβ
[
∇θµθ(s)∇aQµθ(s, a)

∣∣
a=µθ(s)

]
1In [SLH+14], ρβ(s′) :=

∫
S

∑∞
t=1 γ

t−1p0(s)p(s→ s′|t, β)ds
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RLControl - Experiments: DDPG Mathematical background
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After long interruptions of the machine operation,
the booster current tends to be low - as for today,
manual parameter tuning is required.

We seek an automatized, RL-based solution.

I State variables:
I High (radio) frequency - master clock.
I Voltage in LINAC.
I Klystron current diagnostic measurements.

I Action variable: time phase in LINAC.
Observations show that this parameter does
not affect the injection efficiency.

I Reward: (normalized) booster current per
bunch.
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Optimization of booster current: Case description
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RLControl - Experiments: Case description
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Agent
RLControl
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Environment
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Reward
booster current 
per bunch

Action
LINAC time phase
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RLControl - Experiments: Case description



I Long training time and normalization problems→ improved through
demonstration with historical data (inspired by [ZM18]).

I Slow reaction time to reward modifications→ solved by using low γ and
giving up average current as reward and using the instantaneous current
per bunch.

I Non-optimal exploration→ solved by implementing Parameter Space Noise
([PHD+17]).
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Optimization of booster current: Preliminary tests- Issues



Short test (20/05/19). Reward (booster current per bunch) in blue, action
(LINAC time phase) in red - remaining lines correspond to state variables.
Pretraining with 30 days of historical data. Exploration with Parameter Space
Noise ([PHD+17]) appears shaded - period length of ca. 2 min chosen as
experiment for automatic scheduling...
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Optimization of booster current: Preliminary tests



State
klystron diagnostics
LINAC voltage
master clock 

Agent
RLControl

Agent
RLControl

Environment
 BESSY II

Environment
 BESSY II

Reward
booster current 
per bunch

Action
LINAC time phase

Exploration is scheduled in the meantime between injections to avoid disturbing
user activity - optimization activated shortly before each injection.
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Optimization of booster current: Automatic scheduling



automatic scheduling
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Optimization of booster current: Automatic scheduling



Long test during user time with automatic exploration schedule (09/07/19).
Reward (booster current per bunch) in blue, action (LINAC time phase) in red -
remaining lines correspond to state variables. Pretraining with 30 days of historical
data. Exploration with automatic schedule shaded - first hour. The agent
optimizes (and learns) successfully during the next 8.5 hours of user operation.
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Optimization of booster current: Test during user operation
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Injection efficiency is known to be affected by temperature - nowadays it also
needs manual tuning. RL-based optimization is a work in progress.

State
booster current
Injection angle
loss rate
number of bunches

Agent
RLControl

Agent
RLControl

Environment
 BESSY II

Environment
 BESSY II

Reward
injection efficiency

Action
deflection angle

I State variables:
I Number of bunches generated by the LINAC (1, 3 or 5).
I Injection angle mismatch, measured by the beam position in the transfer line.
I Current measured during the booster acceleration phase.
I Measured loss rate after extraction from the booster.

I Action: deflection angle into the storage ring, generated by the 2nd septum.
I Reward: last injection efficiency - fraction of current increase generated in

the storage ring by the charge accelerated in the booster.
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Optimization of injection efficiency: Case description



I Initial problems regarding pretraining with historical data: septum external
conditions vary along time, inducing variations in the optimal action intervals
that were not reflected in the chosen state variables.

I First tests with agents trained from scratch: good performance with few steps
in stable conditions, they failed when certain unknown states (induced by
external modifications in the booster current) had to be faced.

I Solved with shorter pretraining period but including also non-top-up data.
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RLControl - Experiments: Issues



Short test (23/09/19). Pretraining with 23 days of historical data. Reward
(injection efficiency) is plotted in blue, actions (septum deflection angle) is
plotted in red. Exploration periods appear shaded. Ad-hoc modifications in the
number of pulses (in black) and booster current (in purple) are carried out during
the test - the agent manages to find and improve the optimal action regions.
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Optimization of injection efficiency: Preliminary tests
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I Beamline raytracing is a powerful tool to understand X-ray-beam
propagation and for optimizing beam properties for the experimental
requirements.

I Nevertheless, the amount of parameters is impossible to map with
traditional simulation tools:TRAINING DATA VIA SIMULATION

5

screen0 screen1 screen2 screen3 screen4

Exit slit

Experimental focus

Intermediate focus Footprints at selected positions

zoom=5

zoom=10

• Hor./ver./long. misalignment/misorientation/offset 
• Slope errors 
• Long radius 
• Entrance arm length 
• Line density 
• Fix focus constant 
• Thermal distortion 
• …

~100 parameters  
varied

One simulation: ~1s 
—> rough map: 10100s 
—> good map: 100100s

non-empty selection

107 simulations

A.I.
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Beamline raytracing: Training data via simulation



User Interface for the ray tracing software RAY (developed at BESSY in the 80s)

15

RAYTRACING VIA RAY-UI

http://hz-b.de/ray

W-i-p: 
• CUDA 
• Coherence
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Beamline raytracing tools: Simulation via Ray-UI



I The Aquarius project provides BESSY II a soft x-ray beamline and user
infrastructure at the segment H15 (high-β section), including chemistry
laboratory and laser hutch.
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Beamline raytracing: Aquarius U49/2 PGM-2 @ BESSY II



I We aim to use ML methods to learn raytracing as
well as beamline parameter prediction from
photon diagnostics.

I Diagnostic: photon footprint screens at three
different positions in the Aquarius beamline
(intermediate focus, exit slit and experimental
focus).

I Several approaches to the problem:

I Supervised learning: inversion of beamline
raytracing with neural networks - CNNs and
autoencoders→ work by Dr. Gregor Hartmann

I Automatic differentiation→ work by Florentin
David Hildebrandt

I Deep RL
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Beamline raytracing: ML approaches
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Beamline raytracing: ML approaches
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Beamline raytracing: ML approaches



State s
t

last normalized 
mirror position:
M4Tx, M4Ty, M4Tz, 
M4Rx, M4Ry, M4Rz, 
M5Tx, M5Ty, M5Tz, 
M5Rx, M5Ry, M5Rz
 
(s

0  
is a random 

position)

Agent
RLControl - DeepRay

Agent
RLControl - DeepRay

Environment
RayUI simulation 

of Aquarius beamline 
at BESSY II

Environment
RayUI simulation 

of Aquarius beamline 
at BESSY II

Reward r
t

1 if the footprint is focused on ≤ 3 pixels 
with intensity ≥ 10000 in ≤ 10 steps
-1 if the footprint is focused on ≥ 50 pixels 
or has intensity ≤ 1000 or ≥ 10 steps
0 otherwise

Action a
t

 modification added to the 
last mirror position s

t 
(Δ with 

normalized step size 0.1) 

I Step: one single raytracing (one screen at experimental focus, res. 300x300).
I Episode: end after 10 modifications of the initial mirror position or reward ±1.
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Beamline raytracing: Deep RL approach - Aquarius beamline



I Extreme model-free approach: the agent only learns how to optimize the
output in few steps given any initial mirror position, not the effect of the
different mirror parameters.

I Heavy parallelization required because of the slow Ray-UI simulations, was
a challenge from the mathematical point of view.

I The convergence was surprisingly fast - usually achieved within ∼ 100000
steps - i.e. 12

√
100000 ' 2.6102 points per dimension.

I The proximity condition (trying to find optimal points in few steps, i.e. close to
the initial random point) leads to find many new optimal mirror positions.
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Beamline raytracing: Deep RL approach - Aquarius beamline
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Beamline raytracing: Deep RL approach - Aquarius beamline
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Beamline raytracing: Deep RL approach - Aquarius beamline
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Beamline raytracing: Deep RL approach - Aquarius beamline



I Test: 5000 episodes with random
initial positions

I Results: 95.66% success rate
(after 4.62 ± 2.3 steps per episode)

M
4T

x
M

4T
y

M
4T

z
M

4R
x

M
4R

y
M

4R
z

M
5T

x
M

5T
y

M
5T

z
M

5R
x

M
5R

y
M

5R
z

M4Tx
M4Ty
M4Tz
M4Rx
M4Ry
M4Rz
M5Tx
M5Ty
M5Tz
M5Rx
M5Ry
M5Rz

Correlation matrix

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure: 5000 initial random positions
0 50 100 150 200 250

0

50

100

150

200

250

L. Vera Ramirez, G. Hartmann, AMALEA Meeting, DESY, 02/12/2019 28

Beamline raytracing: Deep RL approach - Aquarius beamline
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I Results: 95.66% success rate
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Beamline raytracing: Deep RL approach - Aquarius beamline
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Beamline raytracing: Aquarius’ 4783 optimal positions - Histograms
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Beamline raytracing: Aquarius’ 4783 optimal positions - Histograms



Finally, we can also play with the pretrained RL-agent in an interactive way...

Play movie...
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Beamline raytracing: Deep RL approach - Aquarius beamline


video.mp4
Media File (video/mp4)
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I Further tests at the
machine: injection
efficiency with additional
state and action variables

I Further development of the
raytracing case and
application at the real
beamlines.

I Additional use cases: orbit
correction with OCELOT
pretraining?

I Bluesky integration
I User interfaces and

standalone applications
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Conclusion: Next steps for RL @ BESSY II
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I Ensemble methods: Random Forests, Extremely
Randomized Trees... ([Bre01], [GEW06]). For
regression, MSE as loss→ variance as impurity
measure. Self-explaining: allows individual analysis
of each variable’s behavior.

I Support Vector Regression [Smo98] with Random
Fourier Features ([RR08]). SVR extends traditional
SVM (for classification) via Vapnik’s ε-insensitive loss
function ([Vap95]).

I Neural Networks (e.g. see [Roj96]). Feed-forward
NNs for regression (i.e. MSE as loss function).

Figs. from https://dsc-spidal.github.io/harp/docs/examples/rf/, [SS03], [Roj96].
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Backup: Supervised Algorithms
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Feature Importances for TOPUPCC:rdCur_delta I Target: instant approximation to beam lifetime defined via

current decay rate (k = 20): 1
τ = − I̊t

It
≈ − 1

It

∑k
i=0(It−i−It0 )(t−i−t0)∑k

i=0(t−i−t0)2

I Input variables (185 after preprocessing):
I Gap and shift of insertion devices undulators (21 vars)
I Power supply currents and offsets into quadrupoles (58 + 38

vars) and sextupoles (7 vars)
I Collisions with rest gas particles, vacuum pressures (12 vars)
I Local beam loss fractions (49 vars)

I Feature importance analysis with RandomTrees: even distribution,
but quadrupoles (offsets) and insertion devices stand out

Test set Algorithm RMSE R2

Avg. Pers. Mov. Pers. Model Pers. Mov. Pers. Model

Random 20%
ExtraTrees

0.201 0.099 0.091
0.068

0.757 0.794
0.885

SVR-RFF 0.077 0.852 ± 0.001
DNN 0.069 0.881 ± 0.001

Last 20%
ExtraTrees

0.231 0.096 0.079
0.195 ± 0.001

0.829 0.884
0.292 ± 0.006

SVR-RFF 0.121 ± 0.003 0.725 ± 0.015
DNN 0.125 ± 0.006 0.707 ± 0.027
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Optimization of injection efficiency: Experiments



Short test (06/05/19): LINAC voltage set to oscillate with a triangle wave in
order to observe agent reactions. Averaged booster current is used as reward. 7
days of historical data as demonstration and two exploration periods (with output
noise) are used for training - shaded in the plot.
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RLControl booster current



I Neural networks: in both cases, relu used as inner activation function and
adam as optimizer (lr = 0.001).
I Critic network: five hidden layers (25+50+25+10+5 neurons) and concatenates

actions at the first hidden layer. Linear activation at the output layer.
I Actor network: three hidden layers (25+10+5 neurons), all of them with layer

normalization ([BKH16]). tanh used as activation for the output layer.
I In the injection efficiency case, the number of neurons is doubled.

I Data preprocessing: [−1, 1] linear normalization, historical data downsampled
to 60 seconds.

I Parameter Space Noise: δ = 0.01.
I Training parameters: γ = 0.2, pretraining with 10000 steps (2000 before actor

training), warm-up with 32 steps, target model update rate = 0.1.
I Brute-force synchronization: update every 2 seconds through EPICS.
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Backup: RLControl @ BESSY II - Settings



I Neural networks: tanh used as inner activation function and adam as optimizer
(lr = 0.001).
I Critic network: five hidden layers (250+500+250+100+50 neurons) and

concatenates actions at the first hidden layer. Linear activation at the output
layer.

I Actor network: three hidden layers (250+100+50 neurons).
I Data preprocessing: [−1, 1] linear normalization.
I Parameter Space Noise: δ = 0.2.
I Training parameters: γ = 0.99, warm-up with 32 steps, target model update

rate = 0.01
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Backup: RLControl - Aquarius raytracing - Settings



I Test: 5000 episodes with random
initial positions

I Results: 95.66% success rate
(after 4.62 ± 2.3 steps per episode)
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Backup: Deep RL approach - Aquarius beamline
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