Welcome to: 2nd Round Table on Machine and Deep Learning at the DESY Campus

2nd Round Table on **Machine and Deep Learning at the DESY Campus**

10:00 – 11:30 Welcome

Convolutional Neural Networks for electron microscopy tomography
Generative Models for Fast Calorimeter Simulation
ML methods for FEL scattering data analysis
Machine learning in the DESY ATLAS group

11:30 - 11:45 Coffee Break

11:45 - 13:00

Automation of CMS workflow recovery
Neural networks for small angle scattering data analysis
Anomaly Detection for SRF Cavities
Classification for Single Particle Imaging experiments

13:00 - 14:00 Lunch Break

14:00 - 15:00 Snap ML - Accelerated Machine Learning for Business

15:00 - 16:00 Discussion and Conclusions

Page 3

Convolutional Neural Networks for CryoEM-tomography

In collaboration with Militec/ Marlovits (CSSB)

Philipp Heuser, DESY-IT 29/11/2019 Round Table on ML/DL@DESY

Object Detection for Cryo Electron Tomography

Finding Type III Secretion System (T3SS) in minicells for subtomogram averaging

With:
Sean Miletic, Thomas Marlovits
CSSB - Hamburg

Hu et al., 2017

Finding T3SS in EM tomography for subtomogram averaging

Object detection

How to detect a few tiny objects

- get 50x50 px subsamples from images, with stride 1
- Assign lable to each patch
- → Image Classification task

LeNet-5 (1998) for classification

Yann LeCun, et al.

- pioneering 7-level convolutional network by LeCun et al in 1998,
- classifies digits, was applied by several banks to recognise hand-written numbers on checks digitized in 32x32 pixel greyscale images.

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. *Proceedings of the IEEE* **86**, 2278–2324 (1998).

Modified Network

Challenge

Few true answers vs. lots of false answers

Challenge

Preselection of training data

Analysis with standard features:

e.g.

Mean

Median

Skewness

Min

Max

Kurtosis

Etc....

Segmentation

U-Net

Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. *arXiv:1505.04597* (2015).

Segmentation

U-Net

Final trained U-Net

Final trained U-Net

T3SS found!

Searching only within the membrane

T3SS candidates

TP/FP

Ground truth?

Currently we have about the same number of FP as TP.

TP

FP

3D reconstruction

Acknowledgments Thanks to...

DESY-IT Frank Schlünzen

HELMHOLTZ

Analytics Framework

Funding:
Helmholtz Association
Initiative and Networking Fund
project number ZT-I-0003

Thomas Marlovits
Sean Miletic
Wolfgang Lugmayr