recent ML highlights in

the DESY ATLAS group
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the LHC collides protons at extremely high energies

exotic particles are produced and studied
by enormous, complex detectors like ATLAS and CMS
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ATLAS

o o EXPERIMENT
each collision produces

Run Number: 336852, Event Number: 1440436043

a large number Of _ . W | Date: 2017-09-29 11:44:35 CEST
particles

millions of readout
channels required to
reconstruct them
adequately

chris pollard  desy 3 20191129 desy ml



Standard Model Total Production Cross Section Measurements status: July 2019
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"Interesting" processes to observe occur very rarely
produce ~ one billion collisions per second
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z ge number of obse s per event %
-+ we need to separate "interesting'" and "uninteresting events §
- with high accuracy §
+ we need to be able to do this very fast (in some cases
- extremely fast)
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» in the last ~decade machine learning has had a huge impact.
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» I'll focus on some examples that are worked-on actively in

the DESY ATLAS group. \
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about 60 % of the time Higgs
bosons decay to pairs of bottom
quarks

jets resulting from bottom quarks
("b-jets") contain particles that
are not stable

i.e. these particles fly ~millimeters
in the detector before decaying

background jets ("light-jets")
mostly do not contain unstable
particles

light-jets are produced at a much
higher rate than b-jets
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lots of technology already exists for b-jet identification

for instance, algorithms that attempt to reconstruct "secondary vertices'
from the decays of long-lived particles

most recently an RNN, taking reconstructed particles as inputs, was
introduced resulting in significant performance gains
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b-jet efficiency, ¢,
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in ATLAS we use both BDTs
("MV2") and DNNs ("DL1") to

c LA L A R B | ]
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these do a great job learning 10 ~
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- correlations between various 0> 06 07 08 03 1

. . . b-jet tagging efficiency
historical algorithms
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recently introduced more rigorous training of the DNN

- first trainings performed locally
- hyperparameter scan performed on the LHC computing

grid with GPUs
- containers crucial to making this possible

ATLAS Simulation Preliminary DL1 Hyper parameter Optimisationo 29

512 48 42 relu 5000 — 0.01 — '
4200 — 0.008 — —0.72

/ 3400 — 0.006 — — 0.7
2600 — 0.0041 — — 0.69
1880 — 0.0021 — | 068
256 42 36 tanh — 1000 0.0001 —=f\\

0.66
units in 3rd layer units in 4th layer units in 5th layer activation function batch size learning rate validation loss
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more rigorous training and inclusion of the RNN pays off!

Light-flavor jets rejection

Ratio to MV2 (2018)
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b-jets efficiency

e.g. some measurements
of the higgs self-coupling
require 4 b-jets to be
identified

this is a huge gain for
such analyses of the
LHC data
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not so fast!

in practice our understanding of collision events and the detector itself is
far from perfect.

machine learning-based algorithms benefit from correlations between
observables

these correlations are very difficult to predict correctly.
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there is an enormous effort at DESY to 5 e is this real?
=‘f’10 = _— ) E
quantify the performance of b-tagging in 5
real collision data R

and to correct our simulation accordingly
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for this to be possible we
carefully prune through
collisions...

... t0 find events that are
mostly b-jets

and we measure the
discriminant distribution in
the data

for up to 24 combinations of
taggers and types of jets

this uncertainty on the
"real" performance is often
the constraining factor in
extracting parameters of
interest from the data
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this uncertainty on the
"real" performance is often
the constraining factor in
extracting parameters of
interest from the data

this is a recurring issue not
only for b-jet identification

physics analyses using
machine learning building
up complex discriminants
can incur large uncertanties
on the algorithm response

Jose's talk at Terascale
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https://indico.desy.de/indico/event/24272/session/6/contribution/45
https://indico.desy.de/indico/event/24272/session/6/contribution/45

Jose's talk at Terascale

add a domain classifier that
introduces a loss if it can
identify the systematic
variation in question
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https://indico.desy.de/indico/event/24272/session/6/contribution/45

Jose's talk at Terascale
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at the cost of a small loss of

nominal performance . .
looks very promising for

t tically-limited |
trained on GPUs on NAF nodes SystematiCally=limiled analyses
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