
Automation of CMS workflow recovery

Hamed Bakhshiansohi, Dirk Kruecker
& Tools and Integration group @ CMS

2nd Round Table on

Machine and Deep Learning at DESY

29 November 2019

 2

Introduction
● CMS simulation and data processing are organized in “workflow”

tasks, each with thousands jobs
● Workflows are interrupted due to common errors in grid jobs
● There are some workflows that can not be recovered by “Unified”
● Currently all handled manually by an operator

– Looking into the error codes and site statuses

– Take an action, among a few possible actions

● ML seems a natural solution to help the operator and automate
the procedure

 3

How does the operator decide ?
● Matrix of the number of each error in

each site
● Site status at the time the workflow

was reported as ‘needing-assistance’
● Log/Err files of failed jobs? If needed

Possible Actions :
● ACDC : A partial retry of a workflow, it retries only failed jobs

● Helpful in most of the cases
● Kill and Clone

● With new splitting
● New settings for memory and cores

● On-hold and by-pass : very rare use cases

 4

Input dataset : Error codes
● ~27K recorded actions

since 2017
● Error codes:

– 67/66 different error codes
for good/bad sites

– ~90% overlap

– 74 in total

● Error codes are described
in twiki:JobExitCodes
– Errors are categorized

according to the description

– [MEM, FILE, TIME, SITE,
Others]

 5

Dominant error in good/bad sites

● Site related errors
happen rarely in “good
sites”

● Memory, CPU time, File
related errors are
~symmetric in good/bad
sites

 6

Actions
action splitting Site list memory rate

ACDC None Modified Not set 87.53%

clone None Not
modified

Not set 4.61%

ACDC None Modified > 20GB 3.28%

ACDC None Modified > 10GB 1.12%

ACDC None Modified < 10GB 0.75%

ACDC 10x Modified Not set 0.74%

Other actions (27 more rows) < 2% ● Obvious correlation between dominant
error codes and memory settings

● Similar trend for ACDC/clone actions

 7

Tools and framework
● TensorFlow 2.0.0 and the embedded Keras are

used for training
● Data split

● Talos: hyperparameter optimization
– nLayers, nNeurons, Activation functions, batch_size, L2

regularization
– Learning rate is the most important optimized parameter,

as expected

65% Training 20% Validation 15% Test

https://autonomio.github.io/docs_talos/#introduction

 8

Simplest approach: ignore site names
● Sum errors over sites

– separated by site-status

● Binary [ACDC(sites modified), others] classification

● Weighted and normal cross entropy loss function

● Optimized networks

– Unweighted:
● 4 layers each with 50 neurons
● batch_size = 500

– Weighted:
● 6 layers each with 100 neurons
● L2 Regularization for some layers
● batch_size = 5k

Errors in good sites

Errors in bad sites

Dense1 DenseN…….

 9

Unweighted
Stable results
Accuracy ~ 90%
AUROC ~ 80%

Weighted
No significance
improvement

Train others dataset
Train ACDC dataset
Test ACDC dataset
Test others dataset

#epoch

#epoch

 10

● Binary classification :
ACDC(with memory
configuration) vs. others

● Weighted cross entropy
loss function

● After optimization:
– AUROC : 97.5%

Predict if MEMORY re-configuration is needed
Train mem dataset
Train ACDC dataset
Test ACDC dataset
Test mem dataset

 11

T0 T1 T2 T3 Others
0

10

20

30

40

50

60

70

Good Sites

Bad Sites

● Add Tier information to the input matrix for training.

Errors in good sites in T3

Errors in bad sites in T3

Errors in good sites in T2
Errors in good sites in T1
Errors in good sites in T0

Errors in bad sites in T2
Errors in bad sites in T1
Errors in bad sites in T0

● Binary classification : [ACDC(sites modified),
others]

● Weighted loss function
● Optimized Network

 12

T0 T1 T2 T3 Others
0

10

20

30

40

50

60

70

Good Sites

Bad Sites

● Add Tier information to the input matrix for training.

Errors in good sites in T3

Errors in bad sites in T3

Errors in good sites in T2
Errors in good sites in T1
Errors in good sites in T0

Errors in bad sites in T2
Errors in bad sites in T1
Errors in bad sites in T0

● Binary classification : [ACDC(sites modified),
others]

● Weighted loss function
● Optimized Network

Accuracy and auroc
are improved (~5%)

 13

Using the full matrix, Including site names

● Has been studied in detail (Poster @ CHEP 2018)
● To overcome class imbalance

– SMOTE (synthetic data by an knn approach)

– A simple re-samplng of minority class events

● Bayesian hyper-parameter tuning
● ~80% AUROC and ~90% accuracy achieved

https://indico.cern.ch/event/587955/contributions/2937424/attachments/1687589/2714264/christian_contreras_chep_2018_poster.pdf

 14

Ideas for improvement
● Best results so far by grouping site data into

tiers
● What about grouping error codes?

– Error codes should be sorted

● How to weight data for grouping ?
● Convert (sorted) error/site matrix to image and

use standard CNN methods

 15

Visualization
● Error codes are sorted manually

according to their relevance for acdc
actions

● Average number of errors in each site-tier
for different actions are plotted

● Good-site → red channel
● Bad-site → green channel

 16

Visualization

Error codes are sorted manually
according to their relevance for acdc
actions

● Average number of errors in each site-tier
for different actions are plotted

● Good-site → red channel

Bad-site → green channel

All acdc Actions All clone Actions All mem modified Actions

S
or

te
d

E
rr

or
 c

od
es

Site tiers Site tiers Site tiers

 17

Extended Neural Network
● Simple CNN on image presentation gives

similar results to DNN
– Depends heavily on the sorting of the error codes

● There are extra information, like total number of
Jobs, missing from the site/error matrix

● An extended NN developed to include all the
inputs

 18

Extended Neural Network

● CNN: On image representations

– different error code sortings

● Small one layer dense network on the “matrix of
extra information”

● Deep NN on the “full matrix of error/site codes”

● Concatenate all outputs

● Deep dense layer on top of all the outputs
● Last sigmoid layer to make binary output

● Binary cross entropy
● Target labels: if memory modification is needed

 19

Extended Neural Network

Optimization and results
● Structure of the network is optimized using random/

bayesian search in KerasTuner package
● Results to predict if “memory configuration” is

needed
– AUC is improved ~1%

● No improvement in separating ‘clone’ and ‘acdc’
jobs

Error/Log files as input
● Add the information of the log files to the

error/site matrix for the machine learning

● Use the NLP algorithm word2vec to map the
log files words to high dimensional vectors

● Words that share common context in the
corpus are located in close proximity to one
another in space

pr
es

en
te

d
in

th
e

CHEP co
nf

er
en

ce

https://indico.cern.ch/event/773049/contributions/3473359/

 22

Summary and outlook
● Attempts toward automation of “workflow recovery” were

presented
● Site-Error matrices were summarized
● Reducing the input matrix to site-tier level gives better results

– Extended Neural Net and CNN on image representation

– Marginal improvement

● Log/Err files used for training
– Average of word vectors / RNN to feed all the words

– No improvement

