Automation of CMS workflow recovery

Hamed Bakhshiansohi, Dirk Kruecker & Tools and Integration group @ CMS

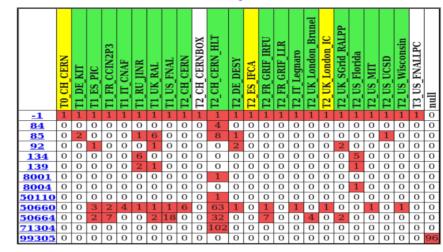
2nd Round Table on Machine and Deep Learning at DESY

Introduction

- CMS simulation and data processing are organized in "workflow" tasks, each with thousands jobs
- Workflows are interrupted due to common errors in grid jobs
- There are some workflows that can not be recovered by "Unified"
- Currently all handled manually by an operator
 - Looking into the error codes and site statuses
 - Take an action, among a few possible actions
- ML seems a natural solution to help the operator and automate the procedure

How does the operator decide?

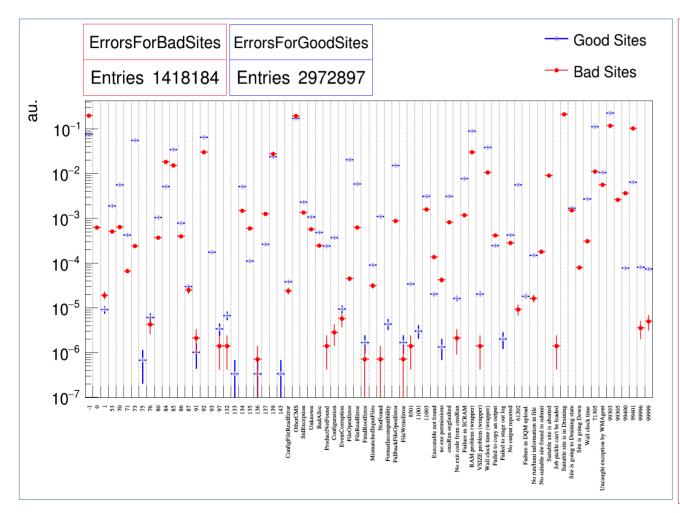
- Matrix of the number of each error in each site
- Site status at the time the workflow was reported as 'needing-assistance'
- Log/Err files of failed jobs? If needed



Possible Actions:

- ACDC: A partial retry of a workflow, it retries only failed jobs
 - Helpful in most of the cases
- Kill and Clone
 - With new splitting
 - New settings for memory and cores
- On-hold and by-pass : very rare use cases

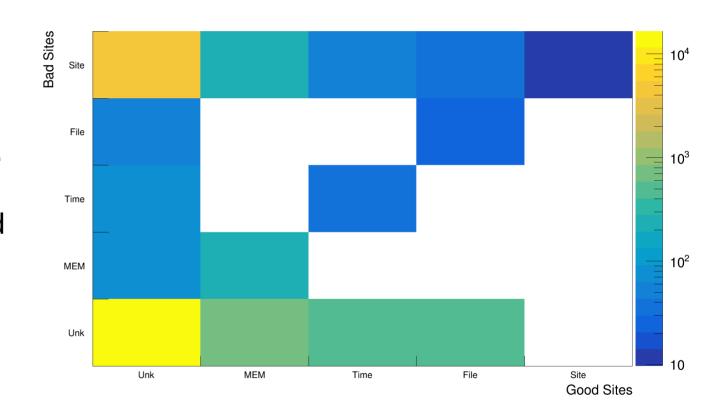
Input dataset: Error codes



- ~27K recorded actions since 2017
- Error codes:
 - 67/66 different error codes for good/bad sites
 - ~90% overlap
 - 74 in total
- Error codes are described in twiki:JobExitCodes
 - Errors are categorized according to the description
 - [MEM, FILE, TIME, SITE, Others]

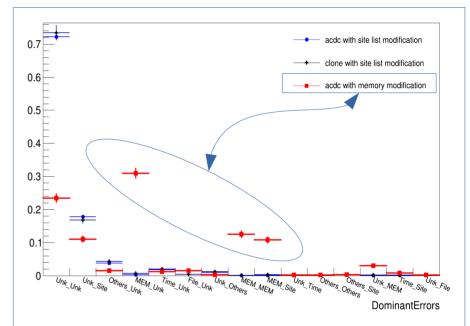
Dominant error in good/bad sites

- Site related errors happen rarely in "good sites"
- Memory, CPU time, File related errors are ~symmetric in good/bad sites



Actions

action	splitting	Site list	memory	rate
ACDC	None	Modified	Not set	87.53%
clone	None	Not modified	Not set	4.61%
ACDC	None	Modified	> 20GB	3.28%
ACDC	None	Modified	> 10GB	1.12%
ACDC	None	Modified	< 10GB	0.75%
ACDC	10x	Modified	Not set	0.74%
Other actions (27 more rows)				< 2%



- Obvious correlation between dominant error codes and memory settings
- Similar trend for ACDC/clone actions

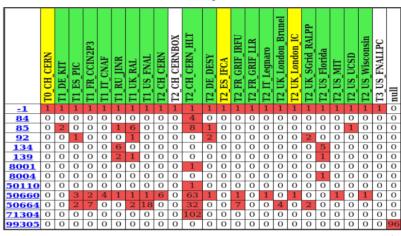
Tools and framework

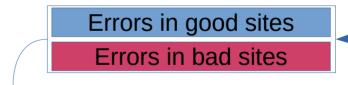
- TensorFlow 2.0.0 and the embedded Keras are used for training
- Data split

- Talos: hyperparameter optimization
 - nLayers, nNeurons, Activation functions, batch_size, L2 regularization
 - Learning rate is the most important optimized parameter, as expected

Simplest approach: ignore site names

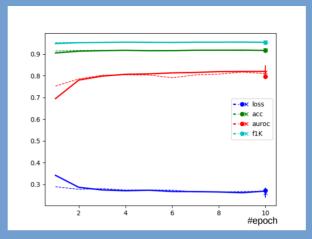
- Sum errors over sites
 - separated by site-status
- Binary [ACDC(sites modified), others] classification
- Weighted and normal cross entropy loss function
- Optimized networks
 - Unweighted:
 - 4 layers each with 50 neurons
 - batch size = 500
 - Weighted:
 - 6 layers each with 100 neurons
 - L2 Regularization for some layers
 - batch size = 5k

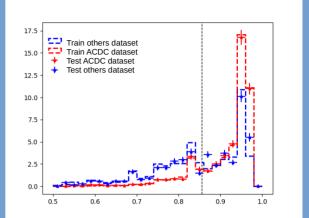




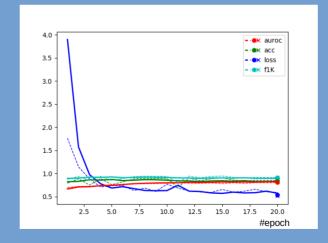


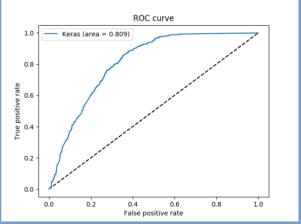
Unweighted Stable results Accuracy ~ 90% AUROC ~ 80%





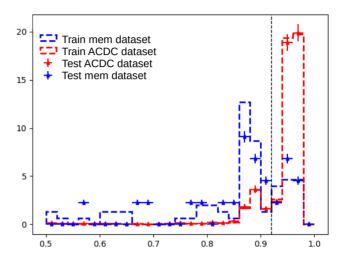
Weighted No significance improvement

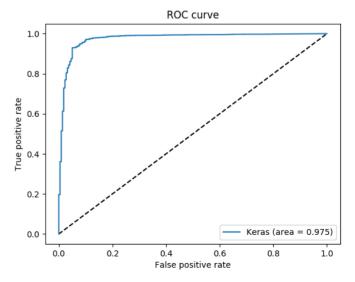




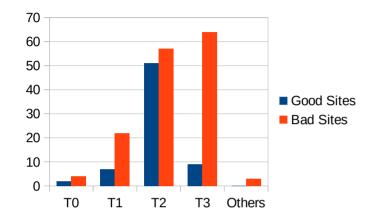
Predict if MEMORY re-configuration is needed

- Binary classification :
 ACDC(with memory configuration) vs. others
- Weighted cross entropy loss function
- After optimization:
 - AUROC: 97.5%

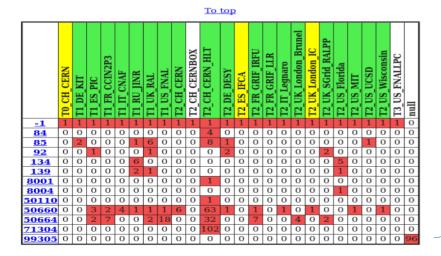


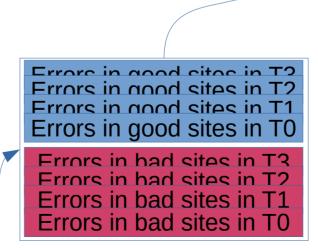


Add Tier information to the input matrix for training.

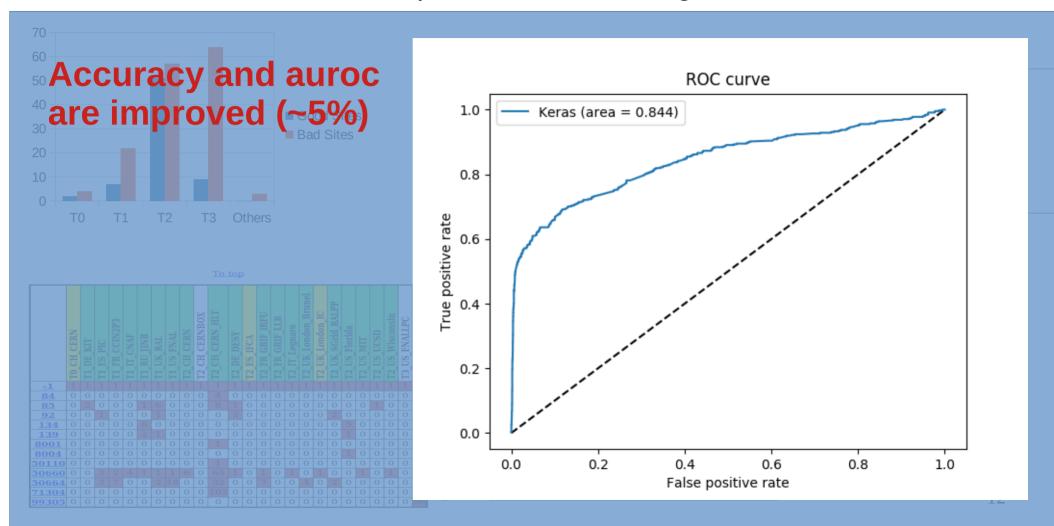


- Binary classification : [ACDC(sites modified), others]
- Weighted loss function
- Optimized Network





Add Tier information to the input matrix for training.



Using the full matrix, Including site names

- Has been studied in detail (Poster @ CHEP 2018)
- To overcome class imbalance
 - SMOTE (synthetic data by an knn approach)
 - A simple re-sampling of minority class events
- Bayesian hyper-parameter tuning
- ~80% AUROC and ~90% accuracy achieved

Ideas for improvement

- Best results so far by grouping site data into tiers
- What about grouping error codes?
 - Error codes should be sorted
- How to weight data for grouping?
- Convert (sorted) error/site matrix to image and use standard CNN methods

Visualization

- Error codes are sorted manually according to their relevance for acdc actions
- Average number of errors in each site-tier for different actions are plotted
- Good-site → red channel
- Bad-site → green channel

All acdc Actions

All clone Actions

All mem modified Actions

Site tiers

Error codes

Sorted

Site tiers

Site tiers

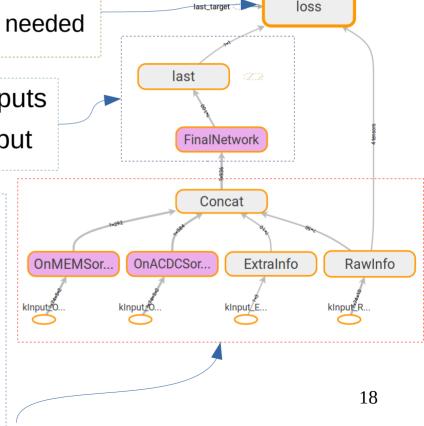
16

Extended Neural Network

- Simple CNN on image presentation gives similar results to DNN
 - Depends heavily on the sorting of the error codes
- There are extra information, like total number of Jobs, missing from the site/error matrix
- An extended NN developed to include all the inputs

Extended Neural Network

- Binary cross entropy
- Target labels: if memory modification is needed
- Deep dense layer on top of all the outputs
- Last sigmoid layer to make binary output
- CNN: On image representations
 - different error code sortings
- Small one layer dense network on the "matrix of extra information"
- Deep NN on the "full matrix of error/site codes"
- Concatenate all outputs



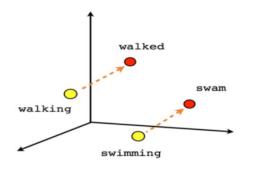
Extended Neural Network Optimization and results

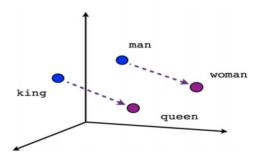
- Structure of the network is optimized using random/ bayesian search in KerasTuner package
- Results to predict if "memory configuration" is needed
 - AUC is improved ~1%
- No improvement in separating 'clone' and 'acdc' jobs

Error/Log files as input

 Add the information of the log files to the error/site matrix for the machine learning

 Words that share common context in the corpus are located in close proximity to one another in space

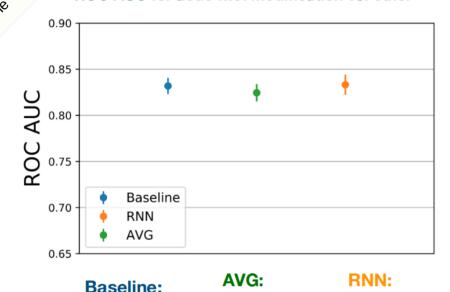




nterence

Results

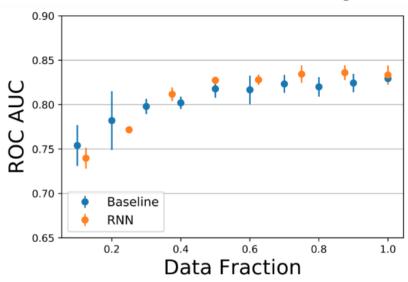
ROC AUC for acdc w.o. modification vs. other

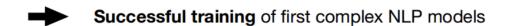


FF for averaged

w2v + counts

ROC AUC as a function of the fraction of the total data set used for training





RNN for embeddings

+ counts

Similar results as baseline - performance improving with more data

FF with counts only

Summary and outlook

- Attempts toward automation of "workflow recovery" were presented
- Site-Error matrices were summarized
- Reducing the input matrix to site-tier level gives better results
 - Extended Neural Net and CNN on image representation
 - Marginal improvement
- Log/Err files used for training
 - Average of word vectors / RNN to feed all the words
 - No improvement