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Introduction

CMS simulation and data processing are organized in “workflow”
tasks, each with thousands jobs

Workflows are interrupted due to common errors in grid jobs
There are some workflows that can not be recovered by “Unified”

Currently all handled manually by an operator
- Looking into the error codes and site statuses
- Take an action, among a few possible actions

ML seems a natural solution to help the operator and automate
the procedure



How does the operator decide ?
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Possible Actions :

« ACDC : A partial retry of a workflow, it retries only failed jobs
e Helpful in most of the cases

e Kill and Clone
« With new splitting
* New settings for memory and cores

* On-hold and by-pass : very rare use cases




Input dataset : Error codes
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Dominant error in good/bad sites
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 Site related errors
happen rarely in “good
sites”

 Memory, CPU time, File
related errors are
~symmetric in good/bad
sites
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Actions

clone None Not Not set 4.61%
modified

ACDC None Modified > 10GB 1.12%

ACDC Ox Modified Not set 0.74%
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* Obvious correlation between dominant
error codes and memory settings
 Similar trend for ACDC/clone actions




Tools and framework

 TensorFlow 2.0.0 and the embedded Keras are
used for training

» Data split

» [alos: hyperparameter optimization

- nLayers, nNeurons, Activation functions, batch_size, L2
regularization

- Learning rate Is the most important optimized parameter,
as expected ’



https://autonomio.github.io/docs_talos/#introduction
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Simplest approach

» 4 |ayers each with 50 neurons
batch_size = 500

Binary [ACDC(sites modified), others] classification
Unweighted:

- separated by site-status

Sum errors over sites
Optimized networks
- Weighted:

« Weighted and normal cross entropy loss function

5k

» L2 Regularization for some layers
batch_size

» 6 layers each with 100 neurons



= Train others dataset

2! Train ACDC dataset
+ TestACDC dataset
+ Test others dataset

ROC curve

—— Keras (area = 0.809)
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Predict if MEMORY re-configuration is needed

» Binary classification :
ACDC(with memory ke
configuration) vs. others ] Eilg

* \Weighted cross entropy :

loss function ) o ame

o After optimization:
- AUROC : 97.5%




« Add Tier information to the input matrix for training.

« Binary classification : [ACDC(sites modified)

others]
« Weighted loss function

e Optimized Network
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« Add Tier information to the input matrix for training.
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Using the full matrix, Including site names

* Has been studied in detall ( )

* To overcome class imbalance
- SMOTE (synthetic data by an knn approach)
- A simple re-samplng of minority class events

e Bayesian hyper-parameter tuning
 ~80% AUROC and ~90% accuracy achieved
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https://indico.cern.ch/event/587955/contributions/2937424/attachments/1687589/2714264/christian_contreras_chep_2018_poster.pdf

ldeas for improvement

Best results so far by grouping site data into
tiers

What about grouping error codes?
— Error codes should be sorted

How to weight data for grouping ?

Convert (sorted) error/site matrix to image and
use standard CNN methods
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Visualization

* Error codes are sorted manually
according to their relevance for acdc
actions

» Average number of errors in each site-tier

for different actions are plotted
e Good-site — red channel
e Bad-site - green channel
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Sorted Error codes

Visualization

All acdc Actions

All clone Actions

Site tiers

All mem modified Actions

Site tiers

Site tiers
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Extended Neural Network

 Simple CNN on image presentation gives
similar results to DNN

- Depends heavily on the sorting of the error codes

e There are extra information, like total number of
Jobs, missing from the site/error matrix

 An extended NN developed to include all the
INputs
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Extended Neural Network

~ Binary cross entropy
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Extended Neural Network
Optimization and results

» Structure of the network Is optimized using random/
bayesian search in KerasTuner package

» Results to predict if “memory configuration” Is
needed

- AUC Is improved ~1%

* No Improvement in separating ‘clone’ and ‘acdc’
jobs
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Error/Log files as

« Add the information of the log files to the
error/site matrix for the machine learning

« Use the NLP algorithm word2vec to map the
log files words to high dimensional vectors

« Words that share common context in the
corpus are located in close proximity to one
another in space
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ROC AUC as a function of the fraction of
the total data set used for training
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=  Successful training of first complex NLP models

Data Fraction

=  Similar results as baseline - performance improving with more data

= Work ongoing — Full potential not yet exploited
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https://indico.cern.ch/event/773049/contributions/3473359/

Summary and outlook

Attempts toward automation of “workflow recovery” were
presented

Site-Error matrices were summarized

Reducing the input matrix to site-tier level gives better results

- Extended Neural Net and CNN on image representation
- Marginal improvement

Log/Err files used for training
- Average of word vectors / RNN to feed all the words
- No improvement
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