

Probing Electroweak Symmetry Breaking with Vector Boson Scattering

Louis Helary – Heidelberg University Physikalisches Institut

Experiment-theory HEP seminar – November 13th 2019

Outline

- Introduction
- Challenges
- Experimental Results
- New Physics
- Conclusion

Outline

- Introduction
- Challenges
- Experimental Results
- New Physics
- Conclusion

The Standard Model

- The SM is the model that describes all particles and their interactions.
- There are 3 interactions:
 - Electromagnetism
 - Weak
 - Strong
 - Described by symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- The matter consists of 6 quarks and 6 leptons
- The last particle observed is the Higgs boson, consequence of the Electroweak Symmetry breaking (EWSB) mechanism. Started to be studied (mH, coupling, ...)

Electroweak theory

- Trilinear and Quartic Gauge boson couplings (TGC, QGC) are precisely determined by SU(2)_L x U(1)_Y gauge symmetry.
 - Neutral coupling forbidden.
 - TGC:
 - VBF and VV production.
 - QGC:

W

- VBS and VVV production.
- Allowed SM QGC vertex:

 Multiboson allow stringent test of EW theory, and model independent way to look for new physics at TeV scale!

Why studying specifically VBS? Arxiv:0806.4145

Let's consider the scattering of longitudinally polarized weak bosons: W+W-

$$\mathcal{M}^{gauge} = -rac{g^2}{4m_W^2}u + \mathcal{O}((E/m_W)^0)$$

Without Higgs, the amplitude violate unitarity at high energy!

V_LV_L scattering

Let's consider the scattering of longitudinally polarized weak bosons: W+W-

If there is a Higgs, destructive interference between Higgs and gauge boson scattering

$$\frac{g^2}{4m_W^2} \implies \mathcal{M}^{tot} = \mathcal{O}((\frac{E}{m_W})^0)$$

If the HVV coupling is not precisely given by its SM value: $2m_V^2/v^2$ then the unitarity is still violated, unless:

 $\mathcal{M}^{gauge} = -rac{g^2}{4m_w^2}u + \mathcal{O}((E/m_W)^0)$

- There are several (light) scalar resonances where the sum of the coupling of all of them satisfy the SM value.
- There are other new phenoma in VV scattering.

in the limit $s >> m_{\mu}^2, m_{W}^2$

New physics searches

- Use direct searches, look for resonance on falling background.
 - Model dependent approach..
 - If NP is out of the LHC reach, could we still observe it?
- Extend SM with Dim6 and Dim8 operators in Effective Field Theory (EFT): $\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i^{(6)} + \sum_{i} \frac{c_j}{\Lambda^4} \mathscr{O}_j^{(8)}$
 - EFT model independent allow to recover deviation in distributions tails!
 - Provide limits on Dim8 operators with VBS.

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	Х	Х						
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Х	Х	Х	X	Х	Х	X		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	Х	Х	Х	Х	Х		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	Х	Х	X	Х	Х	X	Х	Х
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	Х	X	Х	Х	X	Х	Х
$\mathcal{O}_{T,8}\;, \mathcal{O}_{T,9}$			Х			Х	Х	Х	Х

Outline

Introduction

- Challenges
- Experimental **Results**
- New Physics

Conclusion

Classifying the VBS signal

Arxiv: 1610.08420

VBS contains: quartic diagram, t-channel (H,V), s-channel (H,V)

• Alone do not form a gauge invariant ensemble. Need extra diagrams:

- Possible to separate contributions using kinematic cuts.
- Together referred to Electroweak production, at LO order α^{6}_{EW} .

Main backgrounds to VBS

• Main backgrounds irreducible and order $\alpha^2_{s} \alpha^4_{EW}$

- Mostly contains gluons (emitted or exchanged).
 - Usually less energetic than electroweak diagrams

 \rightarrow They are referred to as QCD-induced backgrounds.

Constructive interference between Electroweak signal and QCD-induced background order $\alpha_s \alpha^5_{EW}$

 Note that signal and backgrounds have all been computed to NLO QCD in the channel analyzed.

Arxiv: 1610.08420

Cross sections @ LHC (8–13TeV)

CERN-THESIS-2014-105

LO Cross sections obtained with Sherpa 1.4

Cuts in "VBS-like" fiducial volume:

- Leptons: p_T>15 GeV, |η|<2.5
- Jets (N) ≥ 2, p_T>30 GeV, |η|<4.5 anti-k_T R=0.4
- m_{jj}>500 GeV
- If Z → ll in final state:
 Z window of 25GeV
- If photons in final state: $pT > 15GeV, \Delta R(\gamma, \ell) > 0.1,$ $\Delta R(\gamma, j) > 0.1$
- Low signal cross section (o(fb)), vs high irreducible background!

VBS topology

- Events with a very peculiar topology:
 - 2 jets (3,4) with:
 - Large p_T , ΔY , m_{jj} .
 - No or little color activity in between (~2 jets in the event).
 - Boson(s) decay products (1,2) are emitted in the di-jet rapidity gap.

Tag VBS events

- Take advantage of this topology to tag the events.
- Use dedicated variables
 - Centrality:

 $\zeta(\ell\ell\gamma) = \left| \frac{y_{\ell\ell\gamma} - (y_{j_1} + y_{j_2})/2}{(y_{j_1} - y_{j_2})} \right|$

• Most Higgs and VBS measurements employ multivariate approach.

Mis-modelling in the VBF region

VBS analyses relies on proper modelling of:

- Jets in forward region.
- High m_{jj}, region (signal and backgrounds).

Shown to misbehave, strategy consist most of the time to use a control region to constrain the shape of m_{jj} , and re-apply this correction to the search region.

- Nice opportunity to test the modelling of several MC generators!
- Only possible in VBF
 W/Z finale state because of the statistics available!

Outline VBF, VBS, and Triboson Cross Section Measurements Status: July 2019

July 2019

- Introduction
- Challenges
- Experimental Results

data/theory

CMS Preliminary

1 · · · · ·				
CMS E	W measurements vs.	7 TeV CMS me	asurement (stat,stat+sys)	⊢ +- ○ -+-1
۲ ۲	Theory		asurement (stat,stat+sys)	⊢ +-●-+1
		13 TeV CMS m	easurement (stat,stat+sys)	⊢ ∔••∔-1
qqW	<mark>⊢+∙+</mark>		$0.84 \pm 0.08 \pm 0.18$	19.3 fb ⁻¹
qqW	<mark>⊢∎⊣</mark>		$0.91 \pm 0.02 \pm 0.09$	35.9 fb ⁻¹
qqZ	⊢+_o <mark>_</mark> +i		$0.93 \pm 0.14 \pm 0.32$	5.0 fb ⁻¹
qqZ	<mark>⊢ + ● <mark>← →</mark></mark>		$0.84 \pm 0.07 \pm 0.19$	19.7 fb ⁻¹
qqZ	⊢ <mark>●</mark> -1		$0.98 \pm 0.04 \pm 0.10$	35.9 fb ⁻¹
γγ→WW	<mark>⊢</mark> •		$1.74 \pm 0.00 \pm 0.74$	19.7 fb ⁻¹
qqWγ	•	·	$1.77 \pm 0.67 \pm 0.56$	19.7 fb ⁻¹
ss WW 🗝			$0.69 \pm 0.38 \pm 0.18$	19.4 fb ⁻¹
ss WW	⊮— <mark>●</mark> —		$0.90 \pm 0.16 \pm 0.08$	35.9 fb ⁻¹
qqZγ	⊢ → − −−		$1.48 \pm 0.65 \pm 0.48$	19.7 fb ⁻¹
qqZγ ⊦	└──◇── # <mark> </mark>		$0.64\pm 0.20\pm 0.12$	35.9 fb ⁻¹
qqWZ ⊢	+		0.82 ± 0.47	35.9 fb ⁻¹
qqZZ	⊢; <mark>-</mark> •		$1.38 \pm 0.64 \pm 0.38$	35.9 fb ⁻¹
	<u> </u>	2	3 4	<u> </u>
All results at: ttp://cern.ch/go/pNj7	· P	roduction C	ross Section Ratio	$\sigma_{exp} / \sigma_{theo}$

New Physics

Conclusion

16

Summary of the main Run2 results

Best EW/QC	D		>5σ observation
	Channel	CMS	ATLAS
7	W±W±jj	1709.05822	1905.07714
High purity	W±Zjj	1901.04060	1812.09740
	ZZjj	1708.02812	ATLAS-CONF-2019-033
Best aQGC limits	VVjj	1907.08354	1905.07714
	Zγjj	CMS-PAS-SMP-18-007	1910.09503

High stat (EW and QCD) in leptonic channel

VBS W[±]W[±]jj→{v{vjj

ATLAS: 1906.03203 CMS: 1709.05822

- Selection:
 - 2 same sign ℓ (e, μ).
 - 2 high p_T jets, with high m_{ii} .
 - Using 36 fb⁻¹ of data (2015-2016).
- Fit different bin of m_{ii} in ATLAS, fit in Observation for ATLAS and CMS! $2D m_{\ell\ell} vs m_{ii}$ in CMS.
- Sensitivity: ATLAS: 6.5 (4.6) σ, CMS: 5.5 (5.7) σ
- Measure cross section in fiducial space for EWK signal.

 $\sigma_{WW-EWK}^{fid} = 3.83 \pm 0.77 \text{fb}$ CMS: Madgraph: $\sigma_{WW-FWK}^{fid-LO} = 4.25 \pm 0.27 \text{ fb}$

CMS set limit on new physics.

VBS WZjj→łł≀vjj

ATLAS: 1812.09740 CMS: 1901.04060

- Selection:
 - 3l (e,µ) compatible with a Z and a W
 - 2 high p_T jets, with high m_{jj} .
 - Using 36 fb⁻¹ of data (2015-2016).
- Use BDT approach in ATLAS, cut based approach for CMS fitting m_{ii}.
- **Sensitivity**: ATLAS: 5.3 (3.2) σ CMS: 2.2 (2.5) σ
- $\begin{array}{c|c} .2) \sigma & Observation \\ 5) \sigma & for ATLAS! \\ \end{array}$
- Measure cross section in fiducial space for both EWK and QCD+EWK.

ATLAS: $\sigma_{WZ-EWK}^{fid} = 0.57^{+0.16}_{-0.14}$ fb Sherpa: $\sigma_{WZ-EWK}^{fid-LO} = 0.32 \pm 0.03(scale)$ fb

CMS set limits on aQGC.

VBS ZZjj→łłłłjj

ATLAS: ATLAS-CONF-2019-033 CMS: 1708.02812

- Selection:
 - 4ℓ (e,µ) compatible with 2 Z.
 - 2 high p_T jets, with high m_{jj} .
 - Using 36 fb⁻¹ of data for CMS (2016), full run2 ATLAS!
 - ATLAS also measure signal with *llvvjj*.
- Use BDT approach in ATLAS and CMS.
- **Sensitivity**: ATLAS: 5.5 (3.9) σ, CMS: 2.7 (1.6) σ

Measure cross section in fiducial space for EWK

ATLAS: $\sigma_{ZZ-EWK}^{fid} = 0.82 \pm 0.21$ fb Madgraph $\sigma_{ZZ-EWK}^{fid-LO} = 0.61 \pm 0.03(scale)$ fb

CMS set limits on aQGCs.

VBS VVjj→{vJjj or {{Jjj

ATLAS

1-lepton

0

2

0-lepton

Tot.

ATLAS: 1905.07714 CMS: 1905.07445

Selection::

- 1 or 2 *l* compatible with W or Z, 1 large R^{jet} compatible with W or Z, 2 high p_T jets with high m_{ii} .
 - Using 36 fb⁻¹ of data (2015 - 2016).
- CMS: Analysis not sensitive to SM coupling.
 - Set limit on aQGCs.
- ATLAS: Uses BDT approach to extract SM signal. 2-lepton
 - Sensitivity: 2.7σ (2.5σ).
 - Measure cross section • in fiducial space Combination

$$\sigma_{VV-EWK}^{fid} = 45 \pm 17 \text{ fb}$$

VBS Zɣjj→łłɣjj

• Zy sensitive to SM QGC vertex: WWZy.

Large signal expected!

Very large QCD background in this final state.

Events / GeV

Data/Model

40

60

80

100

120

140

- High stat for signal and QCD, interesting to study modelling in VBS phase space.
- Analysis by both ATLAS and CMS with 36.1 fb-1 of data.
 - Will mostly develop the ATLAS analysis, but give point of comparisons with the CMS one.

CMS:CMS-PAS-SMP-18-007

ATLAS: 1910.09503

180

m_{II} [GeV]

160

200

VBS Zyjj→łłyjj selection

ATLAS bkg estimate Zyjj→łłyjj

Zy QCD:

- Shape MC: Sherpa2.2 NLO 0,1j LO 2,3j
- Normalization from data in the SR.
- Z+jets:
 - Shape from Data (revert photon identification).
 - Normalization using 2D sideband method in low m_{jj} region (<150 GeV), Extrapolation to SR using ratio Z+jet/Zy.
- tty:
 - Shape from MC: aMC@NLO.
 - Normalization from dedicated CR (b-CR):
 - >=1 b-jet -> ~70% purity, 25% Zy QCD.
- Other backgrounds:
 - WZ, Wt.
 - ~0.5% in SR
 - From MC.

		SR	b	-CR
Data	1222		388	
Total expected	1222	±35	389	±19
$Z\gamma jj$ –EW (signal)	104	±26	5	± 1
Zγjj–QCD	864	± 60	82	± 9
Z+jets	200	± 40	19	± 4
$t\bar{t} + \gamma$	48	±10	280	±21
Other backgrounds	7	± 1	4	± 1

CMS bkg estimate Zyjj→łlyjj

Zy QCD:

- Shape and Normalization MC: Madgraph NLO 0,1j, 2jLO
- Constrained uncertainties in low m_{ii} region (150-400 GeV)
- Observe disagreement in the High m_{jj} region (last bin contain overflow)

Z+jets:

- Shape and Normalization data-driven sideband estimate
- Dominant uncertainties due to choice of isolation variable sideband, and non-closure.
- Other backgrounds:
 - single top, tty, diboson, taken from MC

ATLAS Signal extraction $Z_{yj} \rightarrow ll_{yj}$

 m_{ii} $\Delta \eta_{ii}$

 $\zeta(\ell\ell\gamma)$

 $m_{\ell\ell\gamma}$

 $p_T^{\ell\ell\gamma}$

 $m_{\ell\ell}$

 $p_T^{\ell\ell}$

lead lep

 $p_T^{\text{lead jet}}$ $n^{\text{lead jet}}$

 p_T

- In ATLAS construct BDT from 13 input variables.
 - Check that all are well modelled.
 - Except m_{ii}, disagreement at high mass same order as CMS disagreement.
 - Check that this has limited impact on signal. ٠
- Perform Maximum likelihood fit on BDT with electron and muon combined.
 - Fit simultaneously SR and b-CR.
- Perform cross-check with cut-based analysis:
 - Split SR in low and high m_{ii} region (500 GeV)

Fit centrality

nnit Data 1600 ///// Total uncertainty Signal Region Centrality - Centr Zγ EW ZY QCD √s = 13 TeV. 36.1 fb⁻¹ 7+iets $Z\gamma ij, Z \rightarrow e^+e^- \text{ or } \mu^+\mu^-$ Other Backgrounds Events / 6 800 600 400 200 Data/Model 5 0.5 1.5 2 2.5 З 3.5 4.5 ζ(llγ)

26

CMS Signal extraction Zyjj→łlyjj

- In CMS uses distribution constructed from 2D m_{ii} vs Δη_{ii}:
 - 6 categories in signal region
 - Fit simultaneously SR/CR (low m_{ii}) to constrain Zy+2j QCD
- Yield of events in the SR:

	muon channel	electron channel
Nonprompt photon	47.6 ± 4.5	39.3 ± 4.0
Other background	7.4 ± 1.4	2.7 ± 0.8
QCD Z _{γjj}	62.9 ± 3.1	49.6 ± 2.7
EW Z γ jj	36.5 ± 0.7	25.4 ± 0.6
Total background	117.9 ± 5.6	91.6 ± 4.8
Data	172 ± 13	113 ± 11

~60 signal ~200 QCD backgrounds

Uncertainties Zyjj→łłyjj

• Source of errors in ATLAS:

- Statistical uncertainty.
- Z+jet background.
- Modelling uncertainty of the signal.
- Jet uncertainties (JER/JES).
- MC statistics.
- Modelling of the QCD-background.

Source of errors In CMS:

- Z+jet backgrounds.
- JES
- Modelling of QCD background.
- Interference used by both analysis as a systematic uncertainty on template shape.

ATLAS

Source	Uncertainty [%]
Statistical	+19 -18
$Z\gamma jj$ –EW theory modelling	+10
$Z\gamma jj$ –QCD theory modelling	±6
$t\bar{t} + \gamma$ theory modelling	± 2
$Z\gamma jj$ -EW and $Z\gamma jj$ -QCD interference	+3 -2
Jets	±8
Pile-up	± 5
Electrons	± 1
Muons	+3
Photons	± 1
Electrons/photons energy scale	±1
<i>b</i> -tagging	± 2
MC statistical uncertainties	± 8
Other backgrounds normalisation (including Z+jets)	+9 -8
Luminosity	±2
Total uncertainty	±26

uncertainties on EW fiducial cross-section

Source of systematic uncertainty	Relative uncerta	inty [%]
QCD Z γ scale	5 - 25	
EW Z γ scale	2 - 14	
JES	1 - 31	CMS
JER	1 - 13	
Interference	4 - 8	
Nonprompt photon	9 - 37	
Integrated luminosity	2.5	

Uncertainty on signal yield

Results Zyjj→łlyjj

- Sensitivity:
 - ATLAS:
 - MVA: 4.1 (4.1) σ
 - cut-based: 2.9(2.7)σ
 - CMS:
 - Run2: 3.9 (5.2) σ
 - Run1+2: 4.7 (5.5) σ

Can claim evidence, but not observation!

Stay tune for full run2 analysis!

• Both analysis measure fiducial Zyjj EWK cross section:

ATLAS	$\sigma^{ ext{fid.}}_{Z\gamma jj- ext{EW}} \ \sigma^{ ext{fid., MadGraph}}_{Z\gamma jj- ext{EW}} \ \sigma^{ ext{fid., Sherpa}}_{Z\gamma jj- ext{EW}}$	$= 7.8 \pm 1.5 \text{ (stat.)} \pm 1.0 \text{ (syst.)} {}^{+1.0}_{-0.8} \text{ (mod.)} \text{ fb}$ = 7.75 ± 0.03 (stat.) ± 0.20 (PDF + α_{S}) ± 0.40 (scale) fb = 8.94 ± 0.08 (stat.) ± 0.20 (PDF + α_{S}) ± 0.50 (scale) fb
CMS	$\sigma^{fid,obs}_{Z\gamma-EW} \ \sigma^{fid,MadGraph}_{Z\gamma-EW}$	Cross-section [fb] $3.2 \pm 1.0 \text{ (stat)} \pm 0.6 \text{ (syst)} \pm 0.07 \text{ (lumi)} = 3.2 \pm 1.2$ $4.97 \pm 0.14 \text{ (PDF} + \alpha_S) \pm 0.25 \text{ (scale)}$

• Both analysis measure fiducial Zyjj cross section:

Outline

- Introduction
- Challenges
- Experimental Results
- New Physics

Conclusion

EFT limits with Zy VBS

- Look at the tail of the M_{Zy} distribution to find new physics.
- Use modeling of the analysis of Zy EWK+QCD as background to search for signal.
- Generate EFT with Madgraph.
- Set limit on all parameters sensitive to Zɣ coupling: (WWZɣ, ZZZɣ, ZZɣɣ, Zɣɣɣ).

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA	
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	Х	Х	Х							
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	Х	Х	Х	Х	Х	Х	Х			1
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	Х	Х	Х	Х	Х			1
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	Х	Х	Х	Х	Х	Х	X	Х	Х	1
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		Х	Х	Х	Х	X	Х	Х	Х	1
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			Х			Х	Х	Х	Х	1

$\begin{array}{l} -19.3 < F_{\rm M,0}/\Lambda^4 < 20.2 & -15.0 < F_{\rm M,0}/\Lambda^4 < 15.1 \\ -47.8 < F_{\rm M,1}/\Lambda^4 < 46.9 & -30.1 < F_{\rm M,1}/\Lambda^4 < 30.0 \\ -8.16 < F_{\rm M,2}/\Lambda^4 < 8.04 & -6.09 < F_{\rm M,2}/\Lambda^4 < 6.06 \\ -20.9 < F_{\rm M,3}/\Lambda^4 < 21.1 & -13.2 < F_{\rm M,3}/\Lambda^4 < 13.3 \\ -15.2 < F_{\rm M,4}/\Lambda^4 < 15.8 & -11.7 < F_{\rm M,4}/\Lambda^4 < 11.7 \\ -24.9 < F_{\rm M,5}/\Lambda^4 < 24.4 & -19.1 < F_{\rm M,5}/\Lambda^4 < 18.2 \\ -38.6 < F_{\rm M,6}/\Lambda^4 < 40.5 & -30.0 < F_{\rm M,6}/\Lambda^4 < 30.1 \\ -60.8 < F_{\rm M,7}/\Lambda^4 < 62.6 & -46.1 < F_{\rm M,7}/\Lambda^4 < 46.3 \\ -0.74 < F_{\rm T,0}/\Lambda^4 < 0.69 & -0.56 < F_{\rm T,0}/\Lambda^4 < 0.51 \\ -1.16 < F_{\rm T,1}/\Lambda^4 < 1.85 & -1.48 < F_{\rm T,2}/\Lambda^4 < 0.72 \\ -1.96 < F_{\rm T,2}/\Lambda^4 < 0.74 & -0.51 < F_{\rm T,5}/\Lambda^4 < 0.57 \\ -1.64 < F_{\rm T,6}/\Lambda^4 < 1.67 & -1.23 < F_{\rm T,6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\rm T,7}/\Lambda^4 < 2.80 & -1.91 < F_{\rm T,7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\rm T,8}/\Lambda^4 < 0.47 & -0.36 < F_{\rm T,8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\rm T,9}/\Lambda^4 < 1.27 & -0.95 < F_{\rm T,9}/\Lambda^4 < 0.95 \end{array}$		_	Observed Limits (TeV ⁻⁴)	Expected Limits (TeV^{-4})
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$-19.3 < F_{\rm M.0} / \Lambda^4 < 20.2$	$-15.0 < F_{\rm M.0} / \Lambda^4 < 15.1$
$ \begin{array}{l} -8.16 < F_{\rm M,2}/\Lambda^4 < 8.04 & -6.09 < F_{\rm M,2}/\Lambda^4 < 6.06 \\ -20.9 < F_{\rm M,3}/\Lambda^4 < 21.1 & -13.2 < F_{\rm M,3}/\Lambda^4 < 13.3 \\ -15.2 < F_{\rm M,4}/\Lambda^4 < 15.8 & -11.7 < F_{\rm M,4}/\Lambda^4 < 11.7 \\ -24.9 < F_{\rm M,5}/\Lambda^4 < 24.4 & -19.1 < F_{\rm M,5}/\Lambda^4 < 18.2 \\ -38.6 < F_{\rm M,6}/\Lambda^4 < 40.5 & -30.0 < F_{\rm M,6}/\Lambda^4 < 30.1 \\ -60.8 < F_{\rm M,7}/\Lambda^4 < 62.6 & -46.1 < F_{\rm M,7}/\Lambda^4 < 46.3 \\ -0.74 < F_{\rm T,0}/\Lambda^4 < 0.69 & -0.56 < F_{\rm T,0}/\Lambda^4 < 0.51 \\ -1.16 < F_{\rm T,1}/\Lambda^4 < 1.15 & -0.73 < F_{\rm T,1}/\Lambda^4 < 0.72 \\ -1.96 < F_{\rm T,2}/\Lambda^4 < 1.85 & -1.48 < F_{\rm T,2}/\Lambda^4 < 0.57 \\ -1.64 < F_{\rm T,6}/\Lambda^4 < 1.67 & -1.23 < F_{\rm T,6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\rm T,7}/\Lambda^4 < 2.80 & -1.91 < F_{\rm T,7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\rm T,8}/\Lambda^4 < 0.47 & -0.36 < F_{\rm T,8}/\Lambda^4 < 0.95 \\ \end{array} $			$-47.8 < F_{\rm M,1} / \Lambda^4 < 46.9$	$-30.1 < F_{\rm M,1} / \Lambda^4 < 30.0$
$\begin{array}{l} -20.9 < F_{\mathrm{M},3}/\Lambda^4 < 21.1 & -13.2 < F_{\mathrm{M},3}/\Lambda^4 < 13.3 \\ -15.2 < F_{\mathrm{M},4}/\Lambda^4 < 15.8 & -11.7 < F_{\mathrm{M},4}/\Lambda^4 < 11.7 \\ -24.9 < F_{\mathrm{M},5}/\Lambda^4 < 24.4 & -19.1 < F_{\mathrm{M},5}/\Lambda^4 < 18.2 \\ -38.6 < F_{\mathrm{M},6}/\Lambda^4 < 40.5 & -30.0 < F_{\mathrm{M},6}/\Lambda^4 < 30.1 \\ -60.8 < F_{\mathrm{M},7}/\Lambda^4 < 62.6 & -46.1 < F_{\mathrm{M},7}/\Lambda^4 < 46.3 \\ -0.74 < F_{\mathrm{T},0}/\Lambda^4 < 0.69 & -0.56 < F_{\mathrm{T},0}/\Lambda^4 < 0.51 \\ -1.16 < F_{\mathrm{T},1}/\Lambda^4 < 1.15 & -0.73 < F_{\mathrm{T},1}/\Lambda^4 < 0.72 \\ -1.96 < F_{\mathrm{T},2}/\Lambda^4 < 1.85 & -1.48 < F_{\mathrm{T},2}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T},6}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T},6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T},7}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T},7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.56 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array}$			$-8.16 < F_{ m M,2} / \Lambda^4 < 8.04$	$-6.09 < F_{ m M,2}/\Lambda^4 < 6.06$
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$-20.9 < F_{\rm M,3} / \Lambda^4 < 21.1$	$-13.2 < F_{\rm M,3} / \Lambda^4 < 13.3$
$\begin{array}{l} -24.9 < F_{\rm M,5}/\Lambda^4 < 24.4 & -19.1 < F_{\rm M,5}/\Lambda^4 < 18.2 \\ -38.6 < F_{\rm M,6}/\Lambda^4 < 40.5 & -30.0 < F_{\rm M,6}/\Lambda^4 < 30.1 \\ -60.8 < F_{\rm M,7}/\Lambda^4 < 62.6 & -46.1 < F_{\rm M,7}/\Lambda^4 < 46.3 \\ -0.74 < F_{\rm T,0}/\Lambda^4 < 0.69 & -0.56 < F_{\rm T,0}/\Lambda^4 < 0.51 \\ -1.16 < F_{\rm T,1}/\Lambda^4 < 1.15 & -0.73 < F_{\rm T,1}/\Lambda^4 < 0.72 \\ -1.96 < F_{\rm T,2}/\Lambda^4 < 1.85 & -1.48 < F_{\rm T,2}/\Lambda^4 < 1.37 \\ -0.70 < F_{\rm T,5}/\Lambda^4 < 0.74 & -0.51 < F_{\rm T,5}/\Lambda^4 < 0.57 \\ -1.64 < F_{\rm T,6}/\Lambda^4 < 1.67 & -1.23 < F_{\rm T,6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\rm T,7}/\Lambda^4 < 2.80 & -1.91 < F_{\rm T,7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\rm T,8}/\Lambda^4 < 0.47 & -0.36 < F_{\rm T,8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\rm T,9}/\Lambda^4 < 1.27 & -0.95 < F_{\rm T,9}/\Lambda^4 < 0.95 \end{array}$			$-15.2 < F_{M,4} / \Lambda^4 < 15.8$	$-11.7 < F_{\rm M,4} / \Lambda^4 < 11.7$
$\begin{array}{l} -38.6 < F_{\mathrm{M,6}}/\Lambda^4 < 40.5 & -30.0 < F_{\mathrm{M,6}}/\Lambda^4 < 30.1 \\ -60.8 < F_{\mathrm{M,7}}/\Lambda^4 < 62.6 & -46.1 < F_{\mathrm{M,7}}/\Lambda^4 < 46.3 \\ -0.74 < F_{\mathrm{T,0}}/\Lambda^4 < 0.69 & -0.56 < F_{\mathrm{T,0}}/\Lambda^4 < 0.51 \\ -1.16 < F_{\mathrm{T,1}}/\Lambda^4 < 1.15 & -0.73 < F_{\mathrm{T,1}}/\Lambda^4 < 0.72 \\ -1.96 < F_{\mathrm{T,2}}/\Lambda^4 < 1.85 & -1.48 < F_{\mathrm{T,2}}/\Lambda^4 < 1.37 \\ -0.70 < F_{\mathrm{T,5}}/\Lambda^4 < 0.74 & -0.51 < F_{\mathrm{T,5}}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T,6}}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T,6}}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T,7}}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T,7}}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T,8}}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T,8}}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T,9}}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T,9}}/\Lambda^4 < 0.95 \end{array}$			$-24.9 < F_{\rm M,5} / \Lambda^4 < 24.4$	$-19.1 < F_{\rm M.5} / \Lambda^4 < 18.2$
$\begin{array}{cccc} -60.8 < F_{\mathrm{M},7}/\Lambda^4 < 62.6 & -46.1 < F_{\mathrm{M},7}/\Lambda^4 < 46.3 \\ -0.74 < F_{\mathrm{T},0}/\Lambda^4 < 0.69 & -0.56 < F_{\mathrm{T},0}/\Lambda^4 < 0.51 \\ -1.16 < F_{\mathrm{T},1}/\Lambda^4 < 1.15 & -0.73 < F_{\mathrm{T},1}/\Lambda^4 < 0.72 \\ -1.96 < F_{\mathrm{T},2}/\Lambda^4 < 1.85 & -1.48 < F_{\mathrm{T},2}/\Lambda^4 < 1.37 \\ -0.70 < F_{\mathrm{T},5}/\Lambda^4 < 0.74 & -0.51 < F_{\mathrm{T},5}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T},6}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T},6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T},7}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T},7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array}$			$-38.6 < F_{ m M,6} / \Lambda^4 < 40.5$	$-30.0 < F_{M,6} / \Lambda^4 < 30.1$
$\begin{array}{c} -0.74 < F_{\mathrm{T,0}}/\Lambda^4 < 0.69 & -0.56 < F_{\mathrm{T,0}}/\Lambda^4 < 0.51 \\ -1.16 < F_{\mathrm{T,1}}/\Lambda^4 < 1.15 & -0.73 < F_{\mathrm{T,1}}/\Lambda^4 < 0.72 \\ -1.96 < F_{\mathrm{T,2}}/\Lambda^4 < 1.85 & -1.48 < F_{\mathrm{T,2}}/\Lambda^4 < 1.37 \\ -0.70 < F_{\mathrm{T,5}}/\Lambda^4 < 0.74 & -0.51 < F_{\mathrm{T,5}}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T,6}}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T,6}}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T,7}}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T,7}}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T,8}}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T,8}}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T,9}}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T,9}}/\Lambda^4 < 0.95 \end{array}$		Į	-60.8 < $F_{ m M,7}/\Lambda^4$ < 62.6	$-46.1 < F_{ m M,7}/\Lambda^4 < 46.3$
$ \begin{array}{c c} -1.16 < F_{T,1}/\Lambda^4 < 1.15 & -0.73 < F_{T,1}/\Lambda^4 < 0.72 \\ -1.96 < F_{T,2}/\Lambda^4 < 1.85 & -1.48 < F_{T,2}/\Lambda^4 < 1.37 \\ -0.70 < F_{T,5}/\Lambda^4 < 0.74 & -0.51 < F_{T,5}/\Lambda^4 < 0.57 \\ -1.64 < F_{T,6}/\Lambda^4 < 1.67 & -1.23 < F_{T,6}/\Lambda^4 < 1.26 \\ -2.59 < F_{T,7}/\Lambda^4 < 2.80 & -1.91 < F_{T,7}/\Lambda^4 < 2.12 \\ -0.47 < F_{T,8}/\Lambda^4 < 0.47 & -0.36 < F_{T,8}/\Lambda^4 < 0.36 \\ -1.26 < F_{T,9}/\Lambda^4 < 1.27 & -0.95 < F_{T,9}/\Lambda^4 < 0.95 \\ \end{array} $			$-0.74 < F_{ m T.0}/\Lambda^4 < 0.69$	$-0.56 < F_{ m T.0} / \Lambda^4 < 0.51$
$\begin{array}{c c} -1.96 < F_{\mathrm{T},2}/\Lambda^4 < 1.85 & -1.48 < F_{\mathrm{T},2}/\Lambda^4 < 1.37 \\ -0.70 < F_{\mathrm{T},5}/\Lambda^4 < 0.74 & -0.51 < F_{\mathrm{T},5}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T},6}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T},6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T},7}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T},7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array}$	4		$-1.16 < F_{\rm T,1} / \Lambda^4 < 1.15$	$-0.73 < F_{ m T,1}/\Lambda^4 < 0.72$
$ \begin{array}{ll} -0.70 < F_{\mathrm{T},5}/\Lambda^4 < 0.74 & -0.51 < F_{\mathrm{T},5}/\Lambda^4 < 0.57 \\ -1.64 < F_{\mathrm{T},6}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T},6}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T},7}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T},7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array} $			$-1.96 < F_{\mathrm{T},2}/\Lambda^4 < 1.85$	$-1.48 < F_{\rm T,2}/\Lambda^4 < 1.37$
$ \begin{array}{ccc} -1.64 < F_{\mathrm{T,6}}/\Lambda^4 < 1.67 & -1.23 < F_{\mathrm{T,6}}/\Lambda^4 < 1.26 \\ -2.59 < F_{\mathrm{T,7}}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T,7}}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T,8}}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T,8}}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T,9}}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T,9}}/\Lambda^4 < 0.95 \end{array} $			$-0.70 < F_{ m T,5}/\Lambda^4 < 0.74$	$-0.51 < F_{ m L5}/\Lambda^4 < 0.57$
$ \begin{array}{c c} -2.59 < F_{\mathrm{T},7}/\Lambda^4 < 2.80 & -1.91 < F_{\mathrm{T},7}/\Lambda^4 < 2.12 \\ -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array} $			$-1.64 < F_{ m T,6}/\Lambda^4 < 1.67$	$-1.23 < F_{\rm T,6}/\Lambda^4 < 1.26$
$ \begin{array}{c} -0.47 < F_{\mathrm{T},8}/\Lambda^4 < 0.47 & -0.36 < F_{\mathrm{T},8}/\Lambda^4 < 0.36 \\ -1.26 < F_{\mathrm{T},9}/\Lambda^4 < 1.27 & -0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95 \end{array} $			$-2.59 < F_{ m T,7}/\Lambda^4 < 2.80$	$-1.91 < F_{ m T,7}/\Lambda^4 < 2.12$
$-1.26 < F_{T,9} / \Lambda^4 < 1.27 \qquad -0.95 < F_{T,9} / \Lambda^4 < 0.95$			-0.47 $< F_{ m T.8}/\Lambda^4 < 0.47$	$-0.36 < F_{\rm T.8}/\Lambda^4 < 0.36$
		L	$-1.26 < F_{\mathrm{T},9} / \Lambda^4 < 1.27$	$-0.95 < F_{\mathrm{T},9}/\Lambda^4 < 0.95$

aQGC limits

- Stringent limits are now set on all dim 8 operators $F_{S,} F_{M}$ and F_{T} (here only show FT) using VBS and VVV channels.
- Combination of results will help improving these results in the future.

Outline

- Introduction
- Challenges
- Experimental Results
- New Physics
- Conclusion

Conclusions

- VBS topology, very interesting to search for new physics!
 - Although none observed...
 - Use EFT to interpret results!
- Observation of 3 EWK final states achieved over the last years (WW,WZ,ZZ) with run2 data.
 - More to come with full run2!
 - First observation of a process with QGC diagrams!
 - Lot of work still required to do precision measurement using VBS, and therefore probe EWSB.
 - Need more data ($3\sigma V_L V_L$ polarization @HL-LHC).
 - Need better tuned MC calculations.
 - Need to improve on the experimental side (jets, ML,...).
- Very interesting and active field of work!