Using an amplitude analysis to measure the photon polarisation in $B \rightarrow K\pi\pi\gamma$ decays

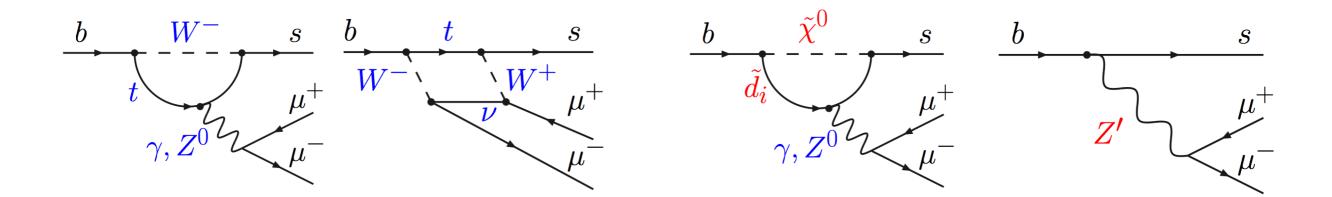
V. Bellee, F. Blanc, <u>P. Pais</u>, A. Puig, O. Schneider, K. Trabelsi, G. Veneziano

DESY Pizza (+HEP) Seminar

November 27, 2019

RARE DECAYS

- 'Flavour-changing neutral current' (FCNC) transitions
- Proceed via electroweak loops; suppressed in the SM
- New particles could also contribute at loop level

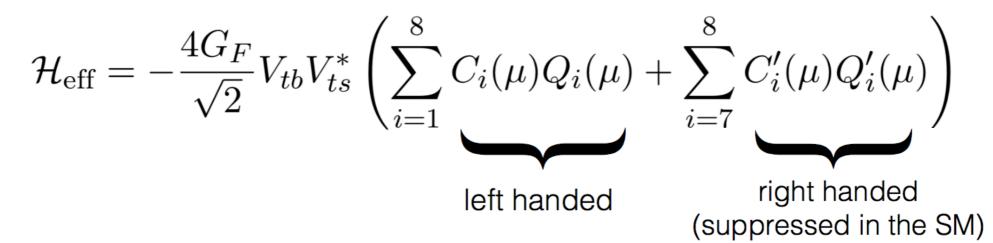


Potential effects observed via:

- Anomalies in decay rates, differential branching fraction measurements
- Analyses of angular distributions
- Tests of lepton flavour universality and lepton flavour violation

PARAMETRISING RADIATIVE DECAYS

Effective Hamiltonian described by an operator product expansion



 $\mbox{-}$ The operators Q_i encode long-distance effects

$$Q_{1-6}$$
 SM 4-quark operators

$$Q_7^{(\prime)} = \frac{e}{16\pi^2} m_b (\bar{s}_{L/R} \sigma_{\mu\nu} b_{R/L}) F^{\mu\nu}$$

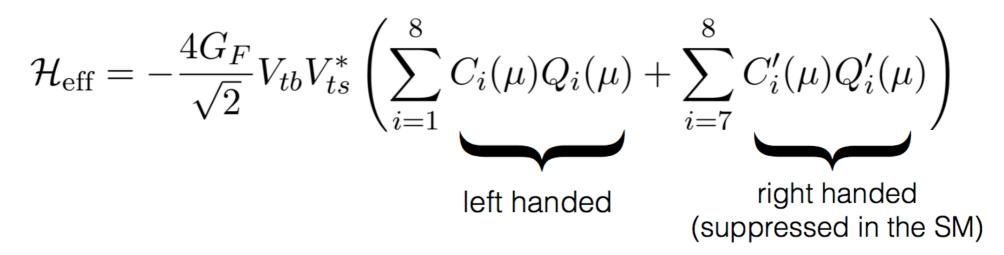
Electromagnetic dipole operator

$$Q_8^{(\prime)} = \frac{g_s}{16\pi^2} m_b (\bar{s}_{L/R} \sigma_{\mu\nu} T^a b_{R/L}) G^{a\mu\nu}$$

Chromomagnetic dipole operator

PARAMETRISING RADIATIVE DECAYS

Effective Hamiltonian described by an operator product expansion



- The Wilson coefficients encode perturbative, short-distance effects
- Define an effective Wilson coefficient C_7^{eff} :

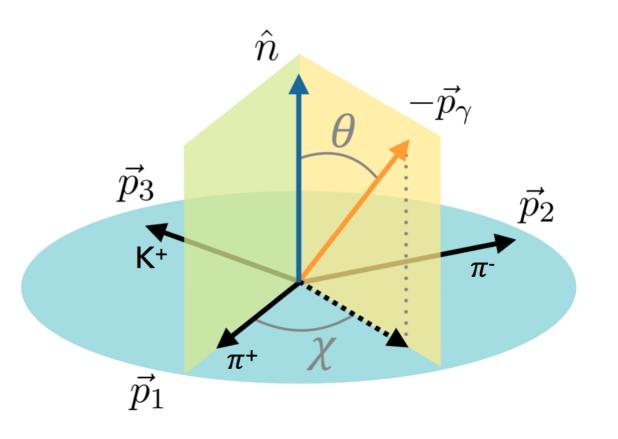
$$C_7^{\text{eff}}(\mu) = C_7(\mu) + \sum_{i=1}^6 y_i C_i(\mu)$$

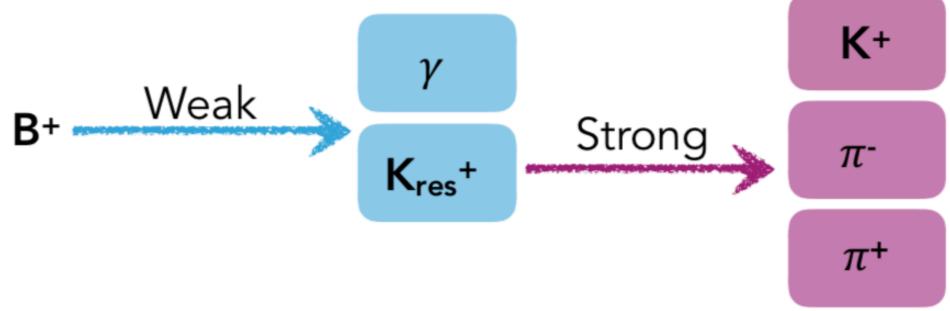
- In the SM, $C_7'/C_7^{eff} = m_s/m_b \sim 0.02$
 - Left-handed photons are dominant
- NP contributions could enhance fraction of right-handed photons

The $K\pi\pi\gamma$ final state can be described in terms of 5 independent variables:

- Three invariant masses (m²(Kππ), m²(Kπ) and m²(ππ))
- Two angular variables (χ and θ) that describe the orientation of the photon with respect to the hadronic plane

This is a $\overline{b} \rightarrow \overline{s}$ transition; in the SM, photons are expected to be predominantly right-handed

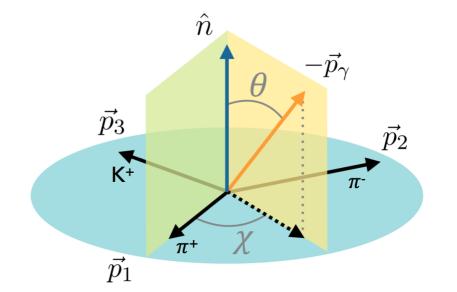




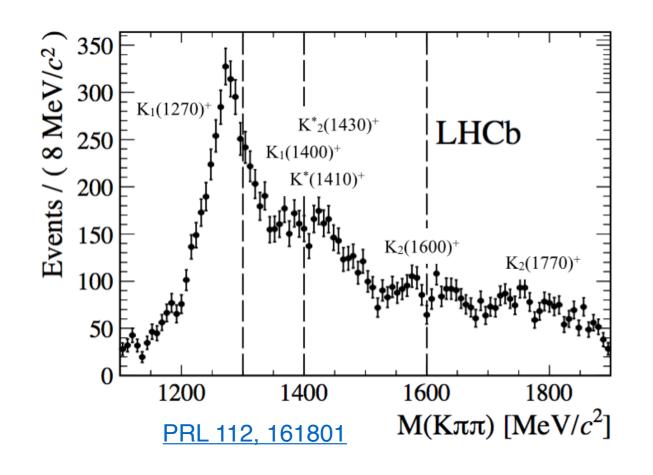
Can measure the photon polarisation using the recoil hadron distribution:

- Photon helicity is odd under parity
- Need three tracks in the final state; can form a parityodd triple product from final-state particle momenta

$$\vec{p_{\gamma}} \cdot (\vec{p_1} \times \vec{p_2})$$



 Requires interference between various decay amplitudes that contribute to the final state Gronau et. al: PRL 88, 051802 PRD 66, 054008



- System populated by a multitude of resonances
 - Interferences give sensitivity to photon polarisation parameter
 - Very complex!

Simplify the problem:

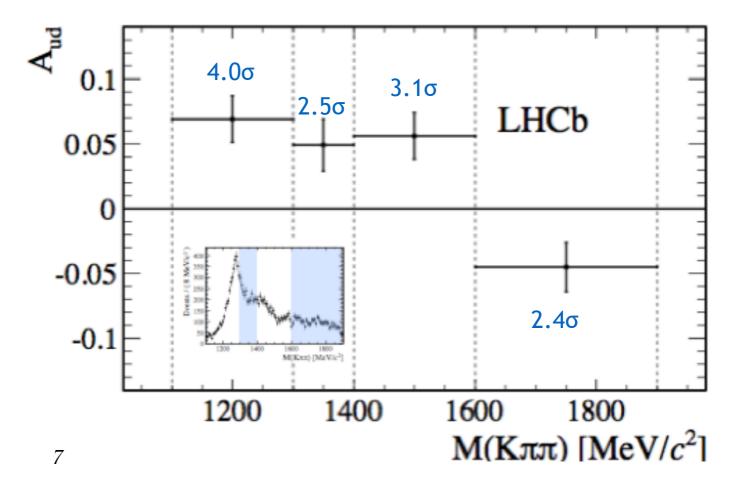
- Compute an up-down asymmetry (between the number of photons emitted on one side and on the other of the Kππ decay plane
- Proportional to photon polarisation parameter

$$\mathcal{A}_{ud} \equiv \frac{\int_0^1 d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^0 d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\Gamma}{d\cos\theta}} = C\lambda_{\gamma}$$

$$\begin{array}{c}
\hat{n} \\
\vec{p_3} \\
\vec{K^+} \\
\vec{p_1} \\
\vec{p_1}
\end{array}$$

- 14,000 signal events selected from full LHCb Run 1 dataset
- Cos θ fit performed in four m(K $\pi\pi$) bins

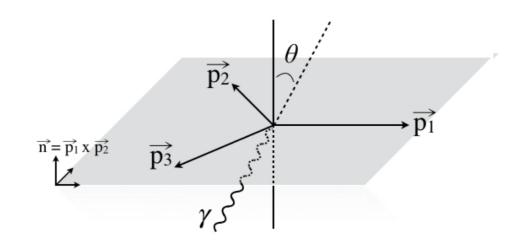
First observation of a non-zero photon polarisation in b→sγ transitions (5.2σ significance)

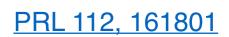


Simplify the problem:

- Compute an up-down asymmetry (between the number of photons emitted on one side and on the other of the Kππ decay plane
- Proportional to photon polarisation parameter

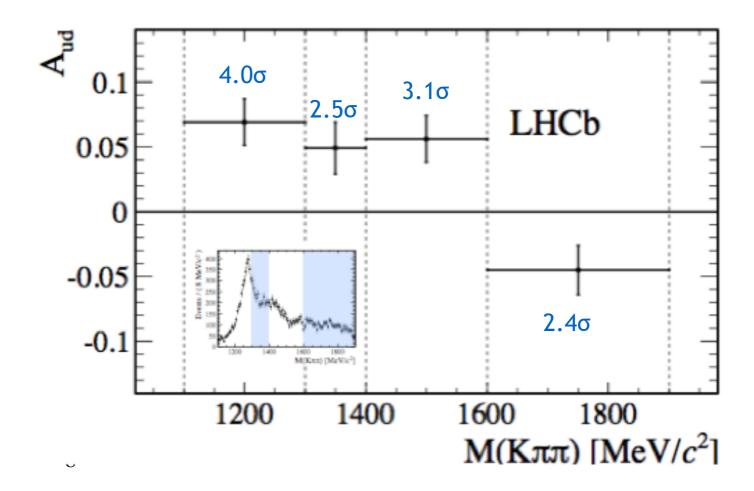
$$\mathcal{A}_{\rm ud} \equiv \frac{\int_0^1 \mathrm{d}\cos\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} - \int_{-1}^0 \mathrm{d}\cos\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}}{\int_{-1}^1 \mathrm{d}\cos\theta \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}} = C\lambda_{\gamma}$$



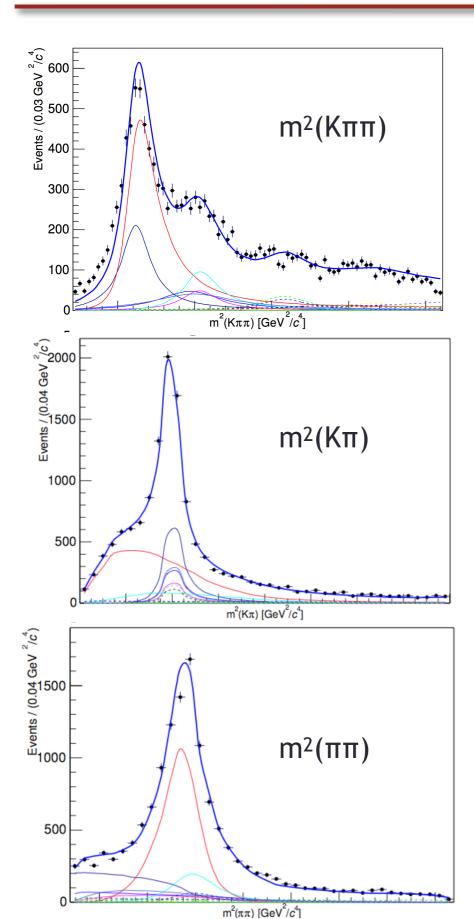


Cannot translate this to a value of the photon polarisation parameter without exact knowledge of the resonances that populate the system

Need a full amplitude analysis



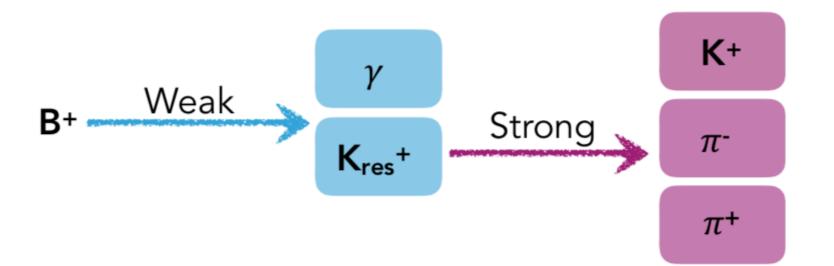
3-D Amplitude Analysis of the Kpp System



Integrate over photon angular variables; fit in terms of invariant masses m²(K $\pi\pi$), m²(K π) and m²($\pi\pi$)

CERN-THESIS-2015-287

Decay channel k	$\mathcal{R}e[f_k]$	$\mathcal{I}m[f_k]$	$FF_k (10^{-2})$
$K_1(1270)^+ \to K^*(892)^0 \pi^+$	1 (fixed)	0 (fixed)	16.8 ± 0.9
$(K_1(1270)^+ \to K^+ \rho(770)^0)$	1.072 ± 0.050	-1.379 ± 0.047	$39.9 {}^{+0.6}_{-0.7}$
$K_1(1270)^+ \to K^+ \omega(782)^0$	0.288 ± 0.086	0.090 ± 0.081	$0.068{}^{+0.028}_{-0.180}$
$K_1(1270)^+ \to K^*(1430)^0 \pi^+$	-0.025 ± 0.062	-0.381 ± 0.055	$0.69{}^{+0.22}_{-0.20}$
$K_1(1400)^+ \to K^*(892)^0 \pi^+$	0.306 ± 0.024	-0.288 ± 0.020	7.8 ± 0.8
$K^*(1410)^+ \to K^*(892)^0 \pi^+$	-0.479 ± 0.042	0 (fixed)	$8.4^{+2.8}_{-3.3}$
$K^*(1680)^+ \to K^*(892)^0 \pi^+$	0.198 ± 0.020	0.094 ± 0.028	$3.5{}^{+1.7}_{-2.1}$
$K^*(1680)^+ \to K^+ \rho(770)^0$	0.019 ± 0.025	0.1104 ± 0.0097	$2.4\ \pm 0.4$
$K_2^*(1430)^+ \to K^*(892)^0 \pi^+$	-0.509 ± 0.034	0 (fixed)	4.8 ± 1.0
$K_2^*(1430)^+ \to K^+ \rho(770)^0$	-0.115 ± 0.047	0.497 ± 0.024	9.0 ± 0.8
$K_2^*(1430)^+ \to K^+ \omega(782)^0$	-0.234 ± 0.072	-0.236 ± 0.084	$0.30{}^{+0.13}_{-0.26}$
$K_2(1600)^+ \to K^*(892)^0 \pi^+$	-0.1666 ± 0.0088	0.044 ± 0.021	$4.4^{+0.9}_{-1.0}$
$K_2(1600)^+ \to K^+ \rho(770)^0$	-0.073 ± 0.011	0.061 ± 0.013	$3.33^{+0.34}_{-0.50}$
$K_2(1770)^+ \to K^*(892)^0 \pi^+$	0.1072 ± 0.0078	0 (fixed)	$3.0{}^{+0.6}_{-0.8}$
$K_2(1770)^+ \to K^+ \rho(770)^0$	-0.0147 ± 0.0044	0.0103 ± 0.0050	$0.23{}^{+0.08}_{-0.32}$
$K_2(1770)^+ \to K_2^*(1430)^0 \pi^+$	-0.041 ± 0.012	-0.0772 ± 0.0077	$0.67^{+0.10}_{-0.09}$
$K_2(1770)^+ \to K^+ f_2(1270)^0$	0.1673 ± 0.0071	-0.029 ± 0.015	$1.30{}^{+0.15}_{-0.16}$
Non resonant	-0.0511 ± 0.0021	0 (fixed)	4.1 ± 0.5



Differential decay rate for a particular decay mode $B^+ \rightarrow K_{res}^{+(i)}\gamma \rightarrow K^+\pi^-\pi^+\gamma$:

$$\frac{d\Gamma(B^+ \to K^+ \pi^- \pi^+ \gamma)}{ds} = |\sum_i c^i_{\rm R} B^i(s) A^i_{\rm R}|^2 + |\sum_i c^i_{\rm L} B^i(s) A^i_{\rm L}|^2$$
Decay amplitude
for B+ $\to K_{\rm res}^{+(i)}\gamma$
Propagator
for K_{res}⁺⁽ⁱ⁾
Decay amplitude
for K_{res}⁺⁽ⁱ⁾ $\to K^+\pi^-\pi^+$

The photon polarisation parameter λ_{γ} for a decay mode *i* is then defined as:

$$\lambda_{\gamma}^{i} \equiv \frac{|c_{\rm R}^{i}|^{2} - |c_{\rm L}^{i}|^{2}}{|c_{\rm R}^{i}|^{2} + |c_{\rm L}^{i}|^{2}} \qquad \begin{array}{l} \text{Gronau et. al:} \\ \frac{\text{PRL 88, 051802}}{\text{PRD 66, 054008}} \end{array}$$

PHOTON POLARISATION IN B+ \rightarrow K+ π - π + γ DECAYS

Use parity invariance of the strong interaction to relate the amplitudes for emitting leftand right- handed photons:

$$\langle K_{\mathrm{res}}^{+(i)R} \gamma_R | \mathcal{O}_{7R} | B^+ \rangle = \mathcal{P}_i(-1)^{(J_i-1)} \langle K_{\mathrm{res}}^{+(i)L} \gamma_L | \mathcal{O}_{7L} | B^+ \rangle$$

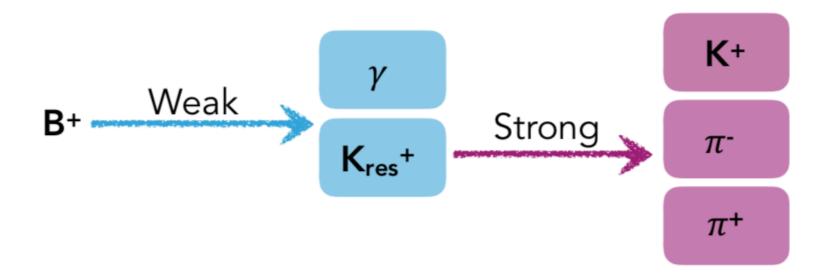
The weak amplitudes are then proportional to the Wilson coefficients:

$$\begin{pmatrix} c_{\rm R}^i \\ c_{\rm L}^i \end{pmatrix} = -\frac{4G_{\rm F}}{\sqrt{2}} V_{tb} V_{ts}^* \begin{pmatrix} C_7^{\rm eff} g^i(0) \\ C_7' P_i(-1)^{J_i-1} g^i(0) \end{pmatrix} \stackrel{\text{hadronic}}{=} \stackrel{$$

PRL 88, 051802

PRD 66, 054008

We can therefore derive λ_{γ} in terms of the Wilson coefficients:



Can rewrite the total decay rate for all decay modes $B^+ \rightarrow K_{res}^+\gamma \rightarrow K^+\pi^-\pi^+\gamma$:

$$d\Gamma(B^+ \to K_{\rm res}^{+(i)}\gamma \to K^+\pi^-\pi^+\gamma) \propto (|\mathcal{M}_{\rm R}|^2 + |\mathcal{M}_{\rm L}|^2) + \lambda_{\gamma}(|\mathcal{M}_{\rm R}|^2 - |\mathcal{M}_{\rm L}|^2)$$

Right handed amplitudes

Photon polarisation parameter $\frac{|C_7^{\text{eff}}|^2 - |C_7'|^2}{|C_7^{\text{eff}}|^2 + |C_7'|^2} \equiv \lambda_{\gamma}$

Left handed amplitudes

В→Кллү FORMALISM

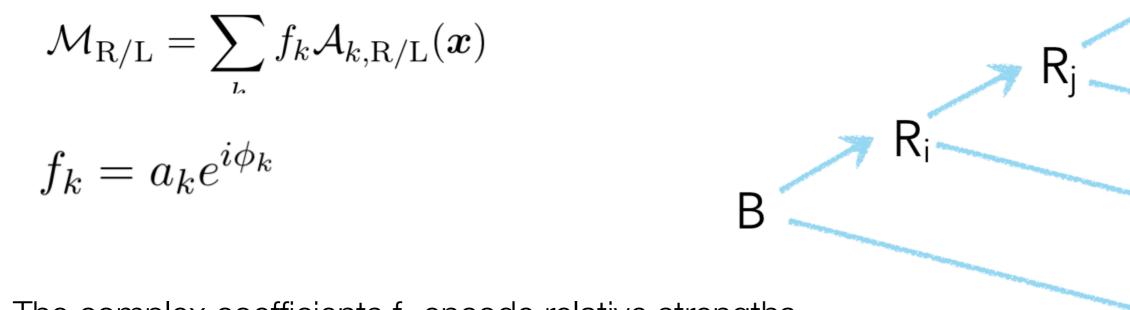
arxiv:1902.09201

 π

γ

$$d\Gamma(B^+ \to K_{\rm res}^{+(i)}\gamma \to K^+\pi^-\pi^+\gamma) \propto (|\mathcal{M}_{\rm R}|^2 + |\mathcal{M}_{\rm L}|^2) + \lambda_{\gamma}(|\mathcal{M}_{\rm R}|^2 - |\mathcal{M}_{\rm L}|^2)$$

Use the isobar model to construct decay amplitudes



The complex coefficients f_k encode relative strengths and phases for each amplitude

В→Кллү FORMALISM

arxiv:1902.09201

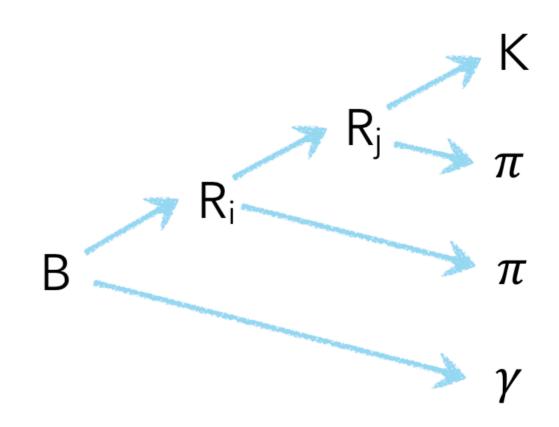
$$\mathcal{A}_{\mathrm{R}}^{k}(\boldsymbol{x}) = B_{L_{B}}(q_{B}(\boldsymbol{x}), 0) \mathcal{T}_{i}^{k}(\boldsymbol{x}) \mathcal{T}_{j}^{k}(\boldsymbol{x}) \mathcal{S}_{ij,\mathrm{R}}^{k}(\boldsymbol{x})$$

 $\mathcal{A}_{\mathrm{L}}^{k}(\boldsymbol{x}) = P_{i}(-1)^{J_{i}-1}B_{L_{B}}(q_{B}(\boldsymbol{x}), 0)\mathcal{T}_{i}^{k}(\boldsymbol{x})\mathcal{T}_{j}^{k}(\boldsymbol{x})\mathcal{S}_{ij,\mathrm{L}}^{k}(\boldsymbol{x})$

Resonance propagators

Barrier factor for a B meson of angular momentum L

Spin factors Encode the phenomenology of the decay, computed with the covariant formalism



В→К $\pi\pi\gamma$ FORMALISM (RECAP)

The (normalised) probability density function for $B \rightarrow K \pi \pi \gamma$ decays:

$$\mathcal{F}(\boldsymbol{x}|\Omega) = \frac{\xi(\boldsymbol{x})\mathcal{P}_{s}(\boldsymbol{x}|\Omega)\Phi_{4}(\boldsymbol{x})}{\int \xi(\boldsymbol{x})\mathcal{P}_{s}(\boldsymbol{x}|\Omega)\Phi_{4}(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x}}$$

arxiv:1902.09201

PRL 88, 051802 PRD 66, 054008

where

The signal function P_s encodes the dependence on λ_{γ}

$$\vec{p}_{3}$$

 \hat{n}

$$\mathcal{P}_{s} = \frac{(1+\lambda_{\gamma})}{2} |\mathcal{M}_{R}|^{2} + \frac{(1-\lambda_{\gamma})}{2} |\mathcal{M}_{L}|^{2}$$

в→К $\pi\pi\gamma$ Amplitude Analysis: Method

The (normalised) probability density function for $B \rightarrow K \pi \pi \gamma$ decays:

$$\mathcal{F}(\boldsymbol{x}|\Omega) = \frac{\xi(\boldsymbol{x})\mathcal{P}_{s}(\boldsymbol{x}|\Omega)\Phi_{4}(\boldsymbol{x})}{\int \xi(\boldsymbol{x})\mathcal{P}_{s}(\boldsymbol{x}|\Omega)\Phi_{4}(\boldsymbol{x})\,\mathrm{d}\boldsymbol{x}}$$

This PDF is implemented in a modified version of the MINT2 generator-fitter framework

• Enables generation of multi-amplitude models with interferences, performs unbinned maximum likelihood minimisation

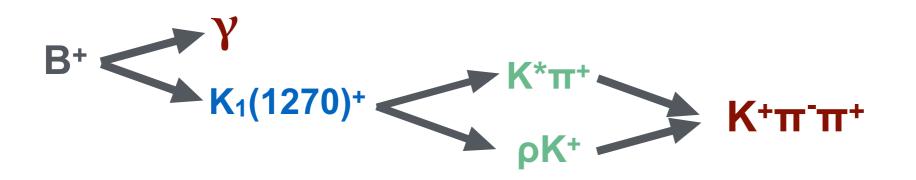
The normalisation integral is computed numerically using MC generated events according to an approximate PDF P_{gen} :

$$\int \xi(\boldsymbol{x}) \mathcal{P}_{s}(\boldsymbol{x}) \phi_{4}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \frac{I_{\mathrm{gen}}}{N_{\mathrm{sel}}} \sum_{j}^{N_{\mathrm{sel}}} \frac{\mathcal{P}_{s}(\boldsymbol{x}_{j})}{\mathcal{P}_{\mathrm{gen}}(\boldsymbol{x}_{j})}$$

The term $I_{\text{gen}} = \int \xi(\boldsymbol{x}) \mathcal{P}_{\text{gen}}(\boldsymbol{x}) \phi_4(\boldsymbol{x}) \, d\boldsymbol{x}$ is independent of all fit parameters, so can be neglected in the minimisation

B+ \rightarrow K+π-π+γ WITH TWO DECAY AMPLITUDES

• Test the method with a simplified, two-amplitude model:



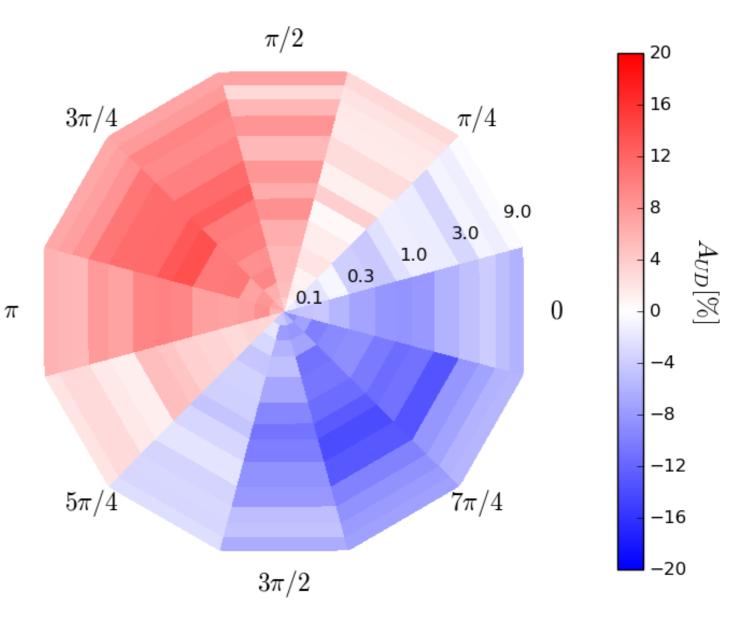
• System described by three free parameters:

- \bullet The relative fraction ${\bf r}$ between the two amplitudes
- Their phase difference $\Delta \varphi$
- The photon polarisation parameter λ_{γ}
- Study performance of the fit for a range of model parameters
 - At each point, 10 data sets of 8000 events each are generated and fit

REMINDER: LIMITATIONS OF Aud

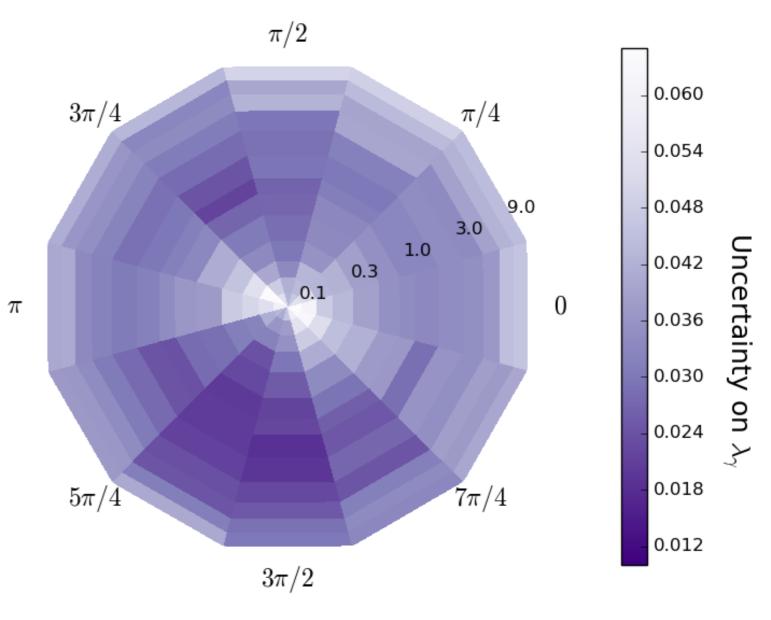
The up-down asymmetry A_{ud} is proportional to λ_{γ}

- The proportionality constant C depends on the resonance content of the system
- Cannot calculate λ_{γ} from up-down asymmetry without full characterisation of the resonances
- As an illustration, use the two amplitude model
- Generate samples for a range of relative fractions and phases between the amplitudes; λ_γ=1 (always)
- For each generated sample, calculate A_{ud}
- Up-down asymmetry varies as a function of the relative fraction and phase
 - Regions where $A_{ud} = 0$, so no sensitivity to λ_{γ}



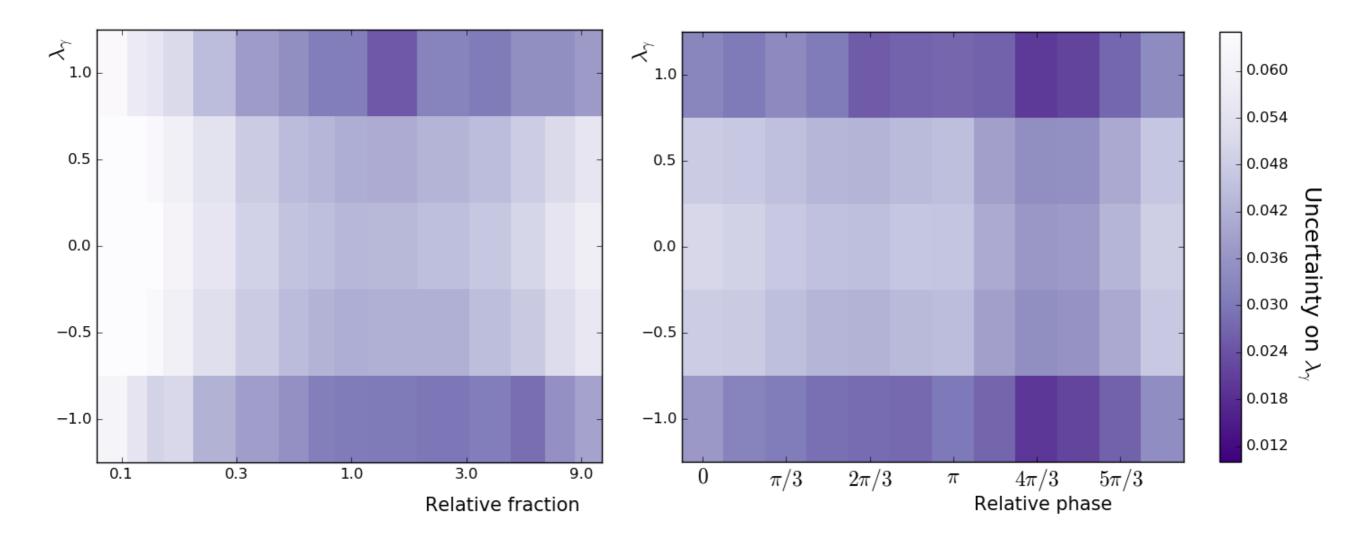
$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$: Two-Amplitude Model

- Use MINT to perform amplitude fits for the same generated data sets
- Fits mostly converge with no errors
 - Resulting fit parameters are centred around the 'true' (generated) values
- The method is sensitive to all data points studied
- Variations in uncertainty on seen as a function of both r and $\Delta \varphi$
 - Uncertainty is highest when one amplitude is dominant, tending towards a single amplitude model



$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$: Two-Amplitude Model

- Repeat the previous test for ranges of (r, $\lambda_{\gamma})$ and ($\Delta\varphi,\,\lambda_{\gamma})$
- Fit is sensitive to all values studied
 - The uncertainty on λ_{γ} increases as values tend towards 0



$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$: Two-Amplitude Model

• More detailed check of behaviour of the fit:

if

- Perform 100 fits for a subset of points for each of the previous plots
- Check distributions of fit parameters, associated errors, and pull parameter g:

$$(\text{fit result}) \leq (\text{true value}): \quad g = \frac{(\text{true value}) - (\text{fit result})}{(\text{positive error})}$$
$$\text{otherwise:} \quad g = \frac{(\text{fit result}) - (\text{true value})}{(\text{negative error})}$$

• Pull distributions are unbiased with widths mostly consistent with unity in all cases

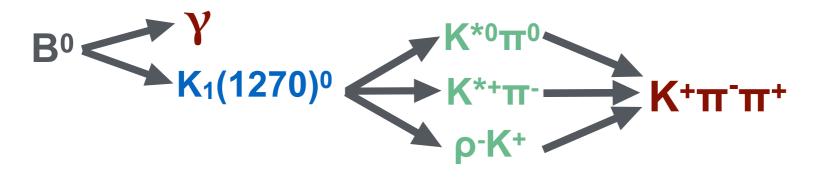
Parameter	True value	Mean value	Std deviation	$\mu_{ m pull}$	$\sigma_{ m pull}$
a	2.02	2.020	0.04	0.01 ± 0.11	1.14 ± 0.07
ϕ	0.82	0.823	0.02	-0.09 ± 0.09	0.94 ± 0.07
λ_γ	1	1.001	0.04	-0.09 ± 0.12	1.17 ± 0.08
a	2.02	2.023	0.04	-0.06 ± 0.11	1.17 ± 0.07
ϕ	0.82	0.823	0.03	-0.13 ± 0.09	0.97 ± 0.06
λ_γ	0.875	0.870	0.04	0.11 ± 0.11	1.17 ± 0.08
a	2.02	2.022	0.04	-0.03 ± 0.09	1.03 ± 0.07
ϕ	0.82	0.822	0.03	-0.07 ± 0.09	0.92 ± 0.06
λ_γ	0.75	0.741	0.04	0.20 ± 0.09	1.03 ± 0.07

B⁰→K⁺π⁻π⁰γ: Three-Amplitude Model

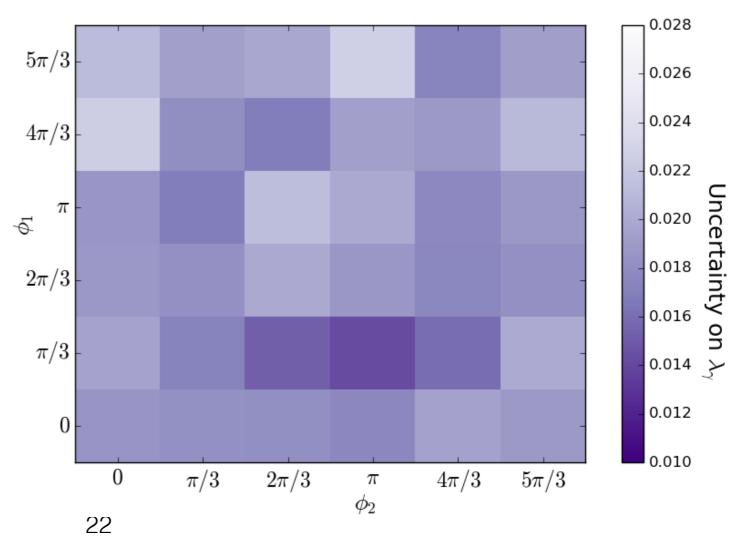
• Perform a similar test with $B^0 \rightarrow K^+\pi^-\pi^0\gamma$ decays

arxiv:1902.09201

• Gronau et. al. noted an increased sensitivity in up-down symmetry with additional interference terms, would the same hold true for a full amplitude analysis?

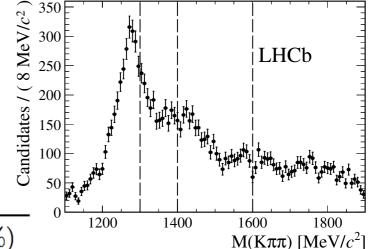


- Generated ratios of fit fractions ~1, $\lambda_{\gamma}=1$
- Scan over a range of relative phases
- Uncertainties within the range seen for the charged mode

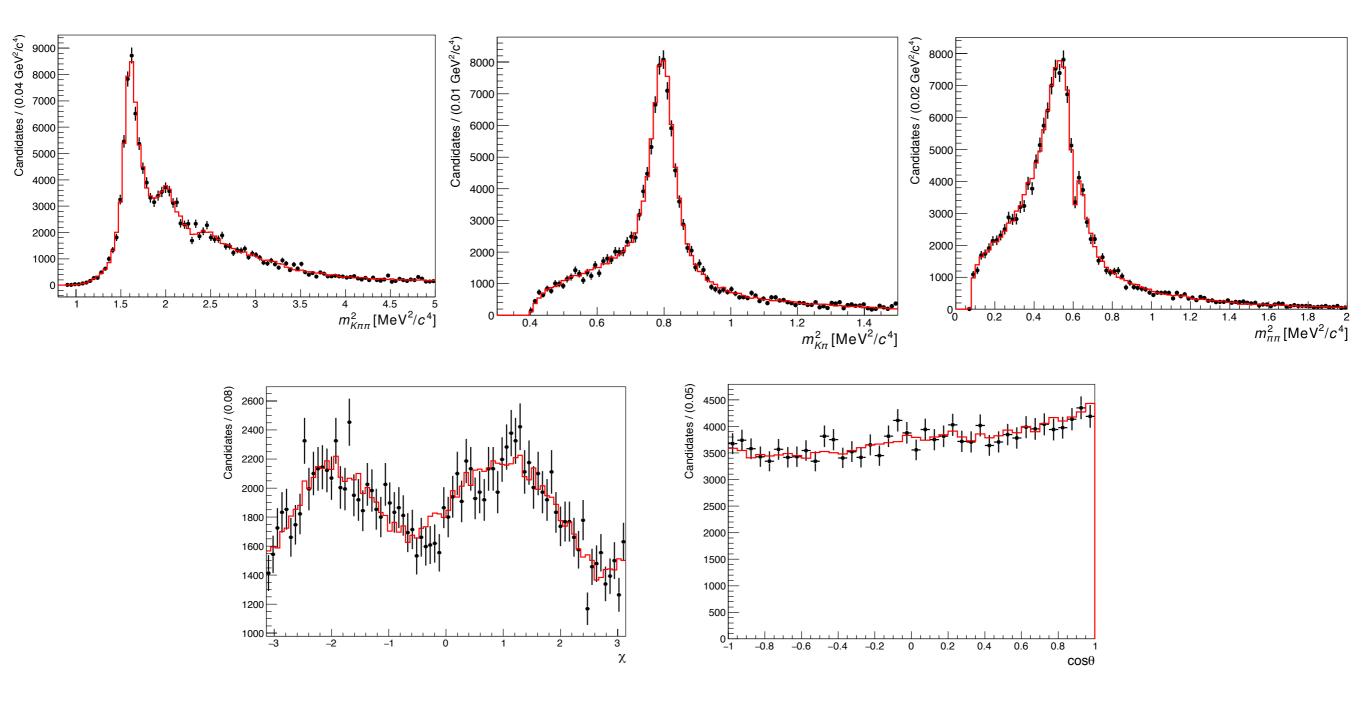


- Build a model with 15 decay amplitudes
- Generate 100 datasets with 14000 events each, (r, $\Delta \phi$) generated values chosen correspond to 3-dimensional amplitude fit results from LHCb Run1 data analysis

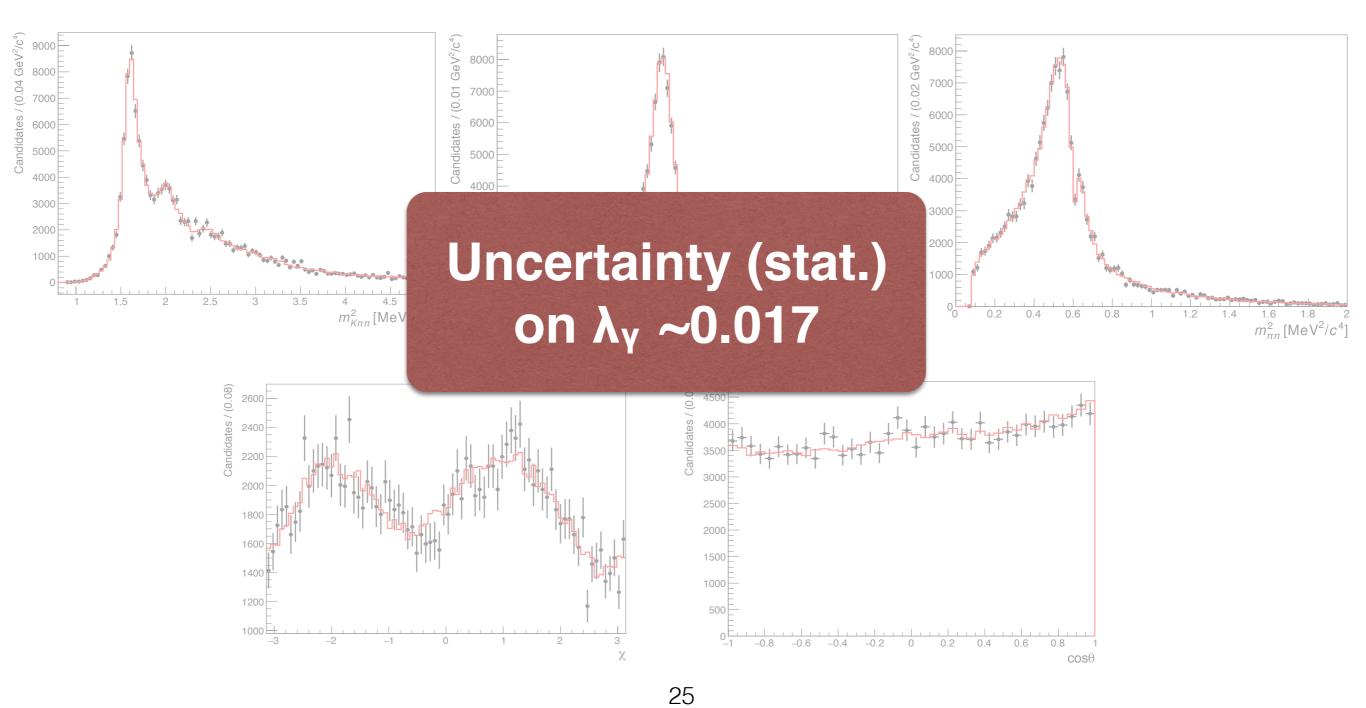
J^P	Amplitude k	a_k	$\phi_{m k}$	Fraction (%)
1+	$K_1(1270)^+ \to K^*(892)^0 \pi^+$ [S-wave]	1 (fixed)	0 (fixed)	15.3
	$K_1(1270)^+ \to K^*(892)^0 \pi^+$ [D-wave]	1.00	-1.74	0.6
	$K_1(1270)^+ \to K^+ \rho(770)^0$	2.02	-0.91	37.9
	$K_1(1400)^+ \to K^*(892)^0 \pi^+$	0.59	-0.76	7.4
	$K^*(1410)^+ \to K^*(892)^0 \pi^+$	0.11	0.00	7.9
1-	$K^*(1680)^+ \rightarrow K^*(892)^0 \pi^+$	0.05	0.44	3.4
	$K^*(1680)^+ \to K^+ \rho(770)^0$	0.04	1.40	2.3
2^{+}	$K_2^*(1430)^+ \to K^*(892)^0 \pi^+$	0.28	0.00	4.5
Ζ'	$K_2^*(1430)^+ \to K^+ \rho(770)^0$	0.47	1.80	8.9
	$K_2(1580)^+ \to K^*(892)^0 \pi^+$	0.49	2.88	4.2
2^{-}	$K_2(1580)^+ \to K^+ \rho(770)^0$	0.38	2.44	3.2
	$K_2(1770)^+ \to K^*(892)^0 \pi^+$	0.35	0.00	2.8
	$K_2(1770)^+ \to K^+ \rho(770)^0$	0.08	2.53	0.2
	$K_2(1770)^+ \to K_2^*(1430)^0 \pi^+$	0.07	-2.06	0.6



- Fits converge, pulls mostly unbiased, with unit width
- Sample fit projection shown below:



- Fits converge, pulls mostly unbiased, with unit width
 - Pull width for λ_{γ} slightly greater than unity, correct average uncertainty from fit to compensate



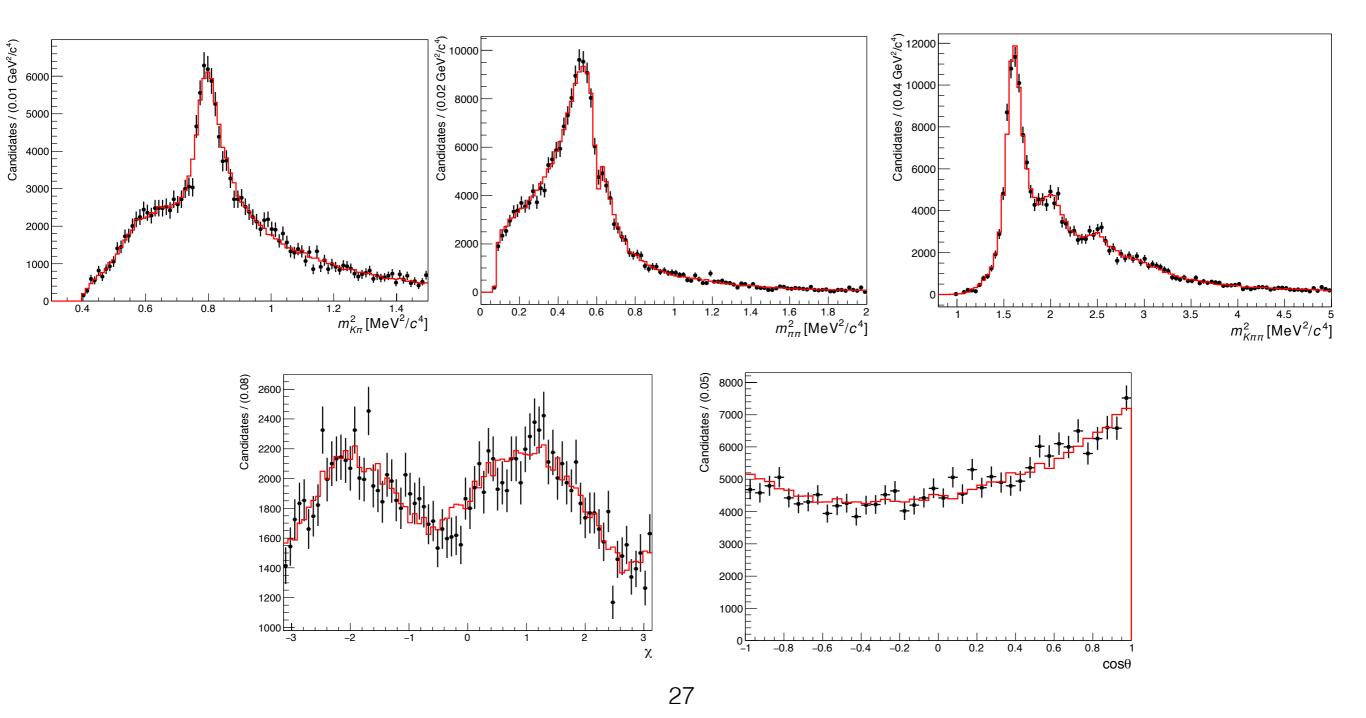
B⁰→K⁺ π ⁻ π ⁰ γ : REALISTIC MODEL

J^P	Amplitude k	a_k	ϕ_{k}	Fraction (%)
	$K_1(1270)^0 \to K^*(892)^0 \pi^0$ [S-wave]	1(fixed)	0 (fixed)	8.0
	$K_1(1270)^0 \to K^*(892)^+\pi^-$ [S-wave]	1.01	0.00	8.0
	$K_1(1270)^0 \to K^*(892)^+\pi^-$ [D-wave]	0.98	-1.74	0.3
1^{+}	$K_1(1270)^0 \to K^*(892)^0 \pi^0$ [D-wave]	0.99	-1.74	0.3
	$K_1(1270)^0 \to K^+ \rho(770)^-$	2.86	-0.91	39.7
	$K_1(1400)^0 \to K^*(892)^+\pi^-$	0.60	-0.76	3.8
	$K_1(1400)^0 \to K^*(892)^0 \pi^0$	0.59	-0.76	3.8
	$K^*(1410)^0 \to K^*(892)^+\pi^-$	0.11	0.00	3.9
	$K^*(1410)^0 \to K^*(892)^0 \pi^0$	0.11	0.00	3.9
1^{-}	$K^*(1680)^0 \rightarrow K^*(892)^+\pi^-$	0.05	0.44	1.7
	$K^*(1680)^0 \to K^*(892)^0 \pi^0$	0.05	0.44	1.7
	$K^*(1680)^0 \to K^+ \rho(770)^-$	0.06	1.40	2.4
2^+	$K_2^*(1430)^0 \to K^*(892)^+\pi^-$	0.27	0.00	2.3
	$K_2^{*}(1430)^0 \to K^{*}(892)^0 \pi^0$	0.27	0.00	2.3
	$K_2^*(1430)^0 \to K^+ \rho(770)^-$	0.63	1.80	8.9
2-	$K_2(1580)^0 \to K^*(892)^+\pi^-$	0.49	2.88	2.2
	$K_2(1580)^0 \to K^*(892)^0 \pi^0$	0.49	2.88	2.2
	$K_2(1580)^0 \to K^+ \rho(770)^-$	0.54	2.44	3.2
	$K_2(1770)^0 \to K^*(892)^+ \pi^-$	0.35	0.00	1.5
	$K_2(1770)^0 \to K^*(892)^0 \pi^0$	0.35	0.00	1.5
	$K_2(1770)^0 \to K^+ \rho(770)^-$	0.11	2.53	0.2
	$K_2(1770)^0 \to K_2^*(1430)^+\pi^-$	0.07	-2.06	0.3
	$K_2(1770)^0 \to K_2^*(1430)^0 \pi^0$	0.07	-2.06	0.3

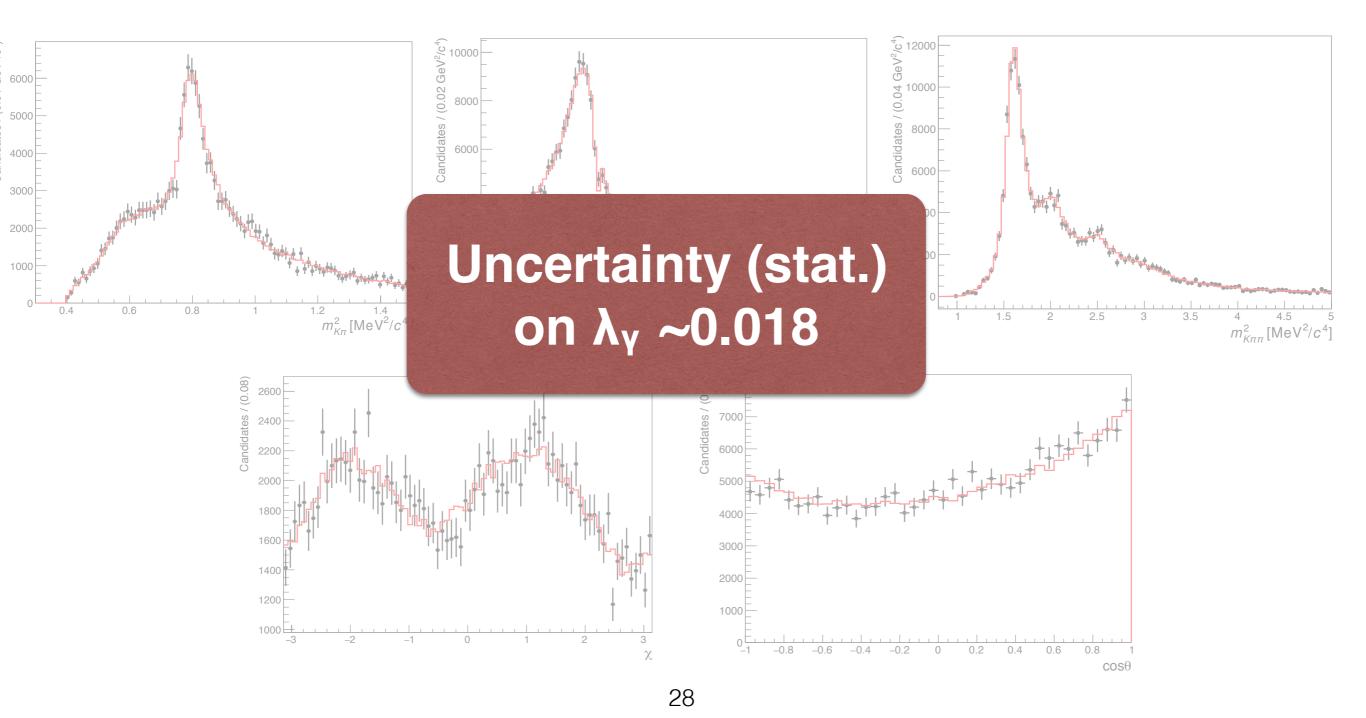
- Build analogous model for $B^0 \rightarrow K^+\pi^-\pi^0\gamma$ decays
- Generate and fit 100 data sets with 10000 events each

B⁰→K⁺π⁻π⁰γ: REALISTIC MODEL

- Fits converge, pulls mostly unbiased, with unit width
- Sample fit projection shown below:

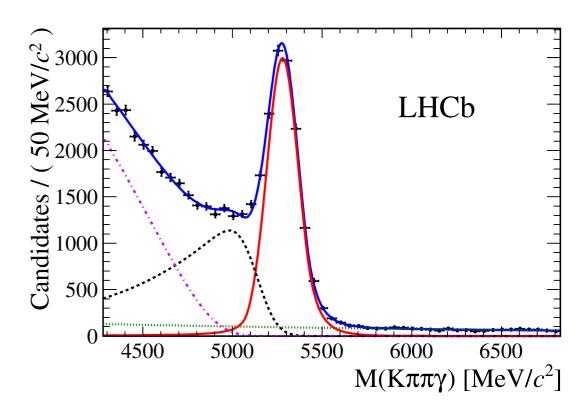


- Fits converge, pulls mostly unbiased, with unit width
 - Pull width for λ_{γ} slightly greater than unity, correct average uncertainty from fit to compensate

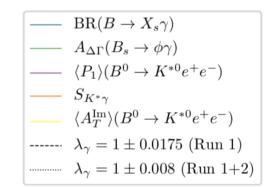


PROSPECTS FOR PHOTON POLARISATION MEASUREMENTS

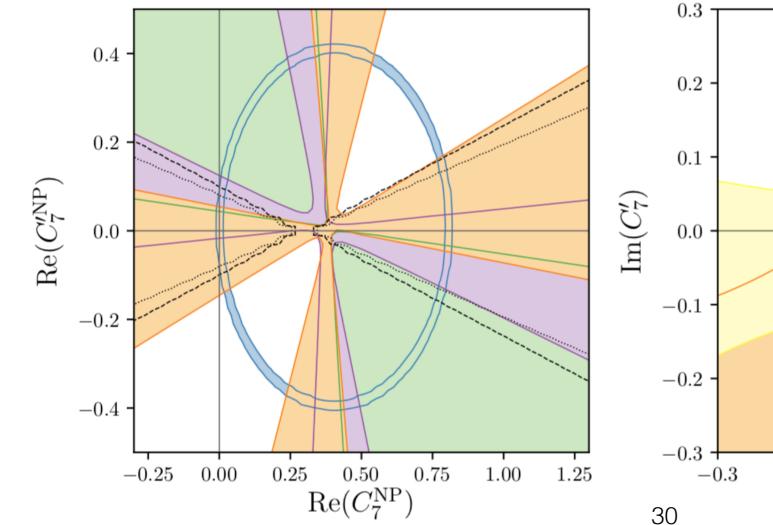
- Sensitivity to photon polarisation parameter studied for both simplified and realistic signal-only models
 - + The method is sensitive to both simplified and realistic models with reasonable values of (r, $\Delta \phi$, λ_{γ}) in the ideal, signal-only case
- LHCb has collected ~6.4 fb⁻¹ of data during 2011, 2012, 2016 and 2017
 - + Expect around 50000 B+ \rightarrow K+ π - π + γ signal events
 - Signal-only toy studies show an expected statistical sensitivity of ~0.01
- Full analysis ongoing with LHCb Run 1 + partial Run 2 data set
 - Event selection + mass fits finalised
 - Pieces in place to proceed with amplitude analysis with data
- + Belle-II could expect around 10000 $B^0 \rightarrow K^+\pi^-\pi^0\gamma$ signal events with ~5 ab⁻¹
 - + Signal-only toy studies show an expected statistical sensitivity of ~0.018

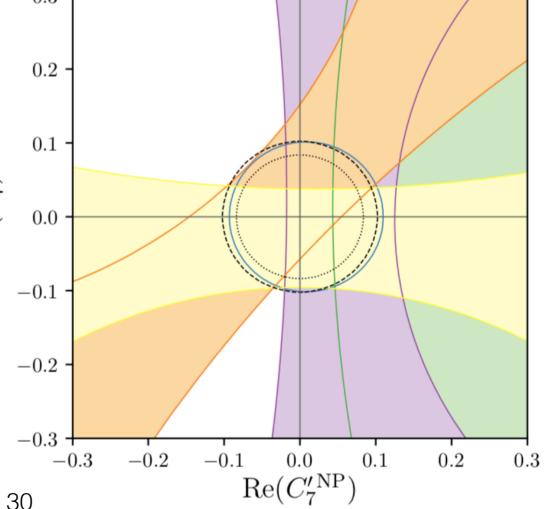


- Sensitivity to photon polarisation parameter from these decays provides complementary information to that from complementary analyses
 - + In particular, could help resolve ambiguities in Re(C7')



<u>A. Puig</u> flavio: D. Straub et al. JHEP 04 (2017) 027





- + However, interpretation may not be quite as straightforward
 - Reminder weak decay amplitudes written in terms of the Wilson coefficients

$$\begin{pmatrix} c_{\rm R}^i \\ c_{\rm L}^i \end{pmatrix} = -\frac{4G_{\rm F}}{\sqrt{2}} V_{tb} V_{ts}^* \begin{pmatrix} C_7^{\rm eff} g^i(0) \\ C_7' P_i(-1)^{J_i - 1} g^i(0) \end{pmatrix}$$

+ Could define a single photon polarisation parameter for all decay modes

$$\lambda_{\gamma}^{i} = \frac{|C_{7\mathrm{R}}|^{2} - |C_{7\mathrm{L}}|^{2}}{|C_{7\mathrm{R}}|^{2} + |C_{7\mathrm{L}}|^{2}} \equiv \lambda_{\gamma}$$

Could have non-negligible contributions from other operators

$$\begin{pmatrix} c_{\rm R}^{i} \\ c_{\rm L}^{i} \end{pmatrix} = -\frac{4G_{\rm F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \begin{pmatrix} C_{7}^{\rm eff} g^{i}(0) + h_{\rm R}^{i} \\ C_{7}^{\prime} P_{i}(-1)^{J_{i}-1} g^{i}(0) + h_{\rm L}^{i} \end{pmatrix}$$

- How could we deal with this?
 - Theoretical estimation of h_{R/L}?
 - Treat them as nuisance parameters in the analysis
 - + Compute the photon polarisation parameter in different invariant mass bins
 - Check compatibility between channels with different contributions, like $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ and $B^0 \rightarrow K^+\pi^-\pi^0\gamma$ decays

Could have non-negligible contributions from other operators

$$\begin{pmatrix} c_{\rm R}^{i} \\ c_{\rm L}^{i} \end{pmatrix} = -\frac{4G_{\rm F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \begin{pmatrix} C_{7}^{\rm eff} g^{i}(0) + h_{\rm R}^{i} \\ C_{7}^{\prime} P_{i}(-1)^{J_{i}-1} g^{i}(0) + h_{\rm L}^{i} \end{pmatrix}$$

- How could we deal with this?
 - Theoretical estimation of h_{R/L}?
 - Treat them as nuisance parameters in the analysis
 - →technically challenging
 - Compute the photon polarisation parameter in different invariant mass bins
 →difficult due to long tails of (broad) high mass resonances
 - Check compatibility between channels with different contributions, like $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ and $B^0 \rightarrow K^+\pi^-\pi^0\gamma$ decays

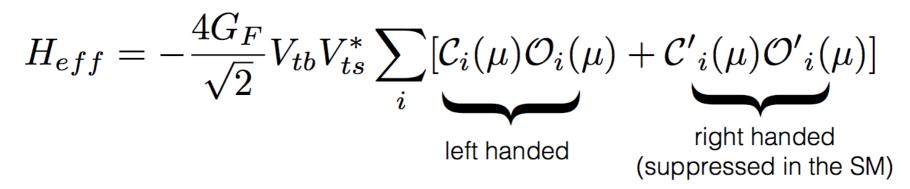
 \checkmark For now, the way to go

SUMMARY

- PDF that describes B→Kππγ decays implemented in a generator-fitter framework
 - Generated single amplitude MC samples validated (where possible) against EvtGen
- Sensitivity to photon polarisation parameter studied for both simplified and realistic signal-only models
 - + Ideal case: signal-only samples with perfect efficiency
 - + The method is sensitive to both simplified and realistic models with reasonable values of (r, $\Delta \phi$, λ_{γ})
- Amplitude analysis method can be used to study both charged and neutral decay modes
- Analysis of charged decay mode with LHCb data sample ongoing

PARAMETRISING FCNC TRANSITIONS

Effective Hamiltonian for radiative b-> s gamma transitions:

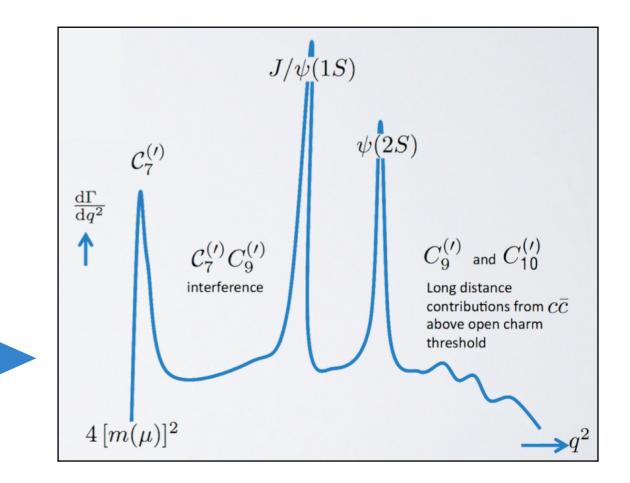


Operators (O_i) - long-distance effects (non-perturbative)

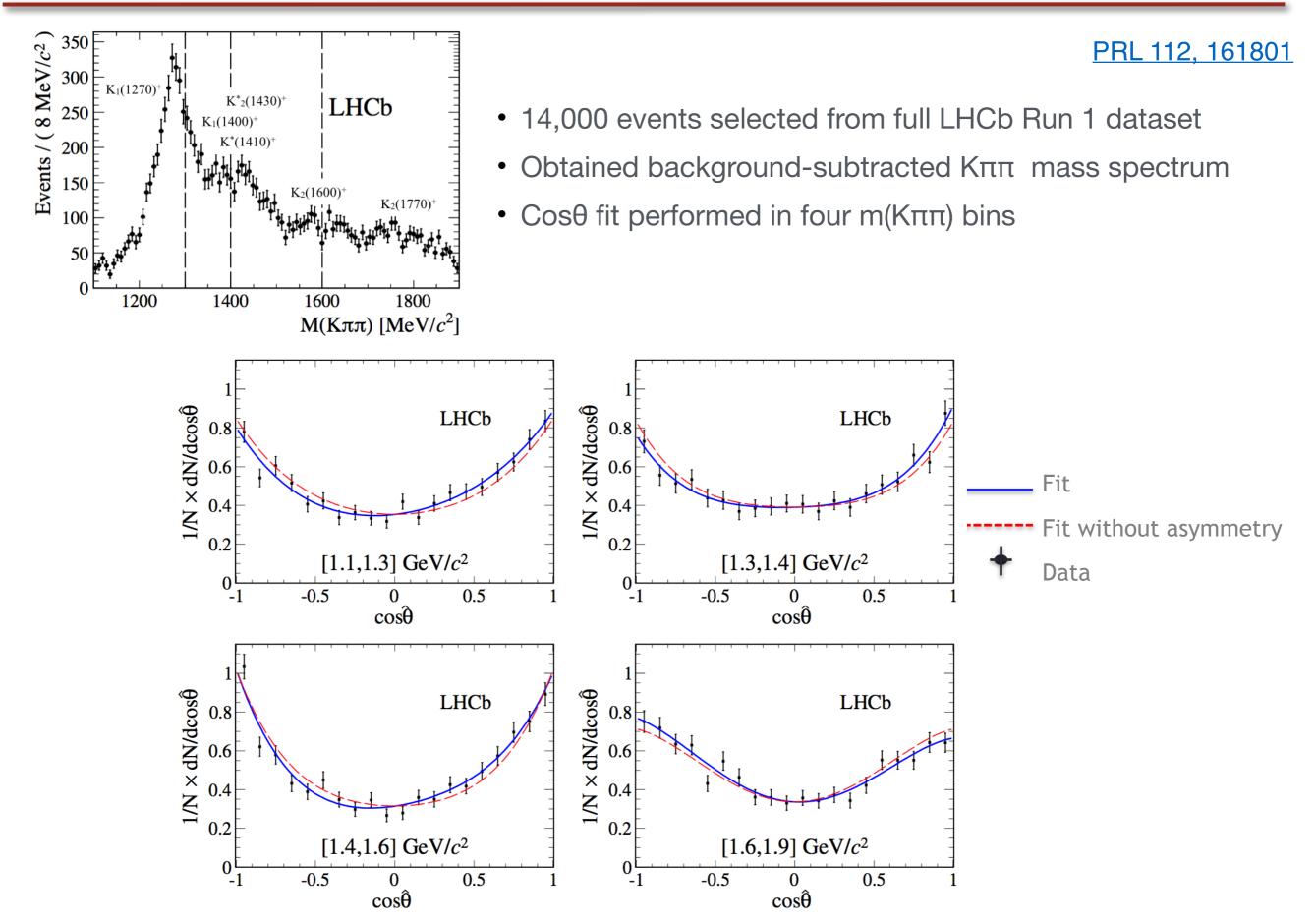
Wilson coefficients (Ci) - perturbative, short-distance physics

i=1, 2	Tree
i=3-6, 8	Gluon penguin
i=7	Photon penguin
i=9, 10	Electroweak penguin
i=S	Higgs (scalar) penguin
i=P	Pseudoscalar penguin

different regions of q² probe different processes



MEASURING THE UP-DOWN ASYMMETRY



TWO-AMPLITUDE MODEL

Decay rate for a system with a single 1+ resonance: [Gronau et al, PRD66 (2002) 054008]

$$\frac{\mathrm{d}\Gamma(B \to K\pi\pi\gamma)}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \frac{1}{2} |\vec{\mathcal{J}}|^2 (1 + \cos^2\theta) + \lambda_\gamma \cos\theta \operatorname{Im}[\vec{n} \cdot (\vec{\mathcal{J}} \times \vec{\mathcal{J}}^*)]$$
where s \rightarrow m²(K \pi \pi), s₁₃ \rightarrow m²(K \pi) and s₂₃ \rightarrow m²(\pi \pi)
Interferences
between decay
modes
$$\begin{bmatrix} \mathsf{K} \\ \mathsf{P} \\ \mathsf{K}_{res} \\ \mathsf{K}_{res$$

В- $\kappa \pi \pi \gamma$ Amplitude Analysis: Method

Notes on the normalisation integral and its implementation in MINT <u>arxiv:1902.09201</u>

- Makes use of 'importance sampling', i.e. sample the function more frequently in regions where its value is large (to minimise uncertainties)
 - Use a mix of approximate signal events with a small amount of phase space events
- Explicit functional form of the efficiency not needed (non-trivial to parametrise in five dimensions)
- Often need a large number of official (full-chain) MC simulated events in order to obtain good precision on the fit
- Generation of normalisation MC toy events + computation of integrals for more complicated models takes up the majority of CPU time in MINT

$$\int \xi(\boldsymbol{x}) \mathcal{P}_s(\boldsymbol{x}) \phi_4(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \frac{I_{\mathrm{gen}}}{N_{\mathrm{sel}}} \sum_j^{N_{\mathrm{sel}}} \frac{\mathcal{P}_s(\boldsymbol{x}_j)}{\mathcal{P}_{\mathrm{gen}}(\boldsymbol{x}_j)}$$

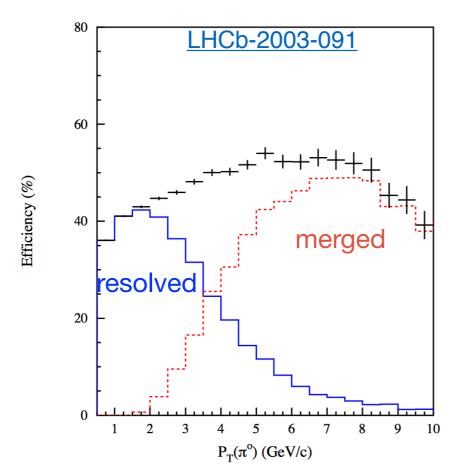
More details on the (practical) challenges of amplitude analyses in Albert's talk

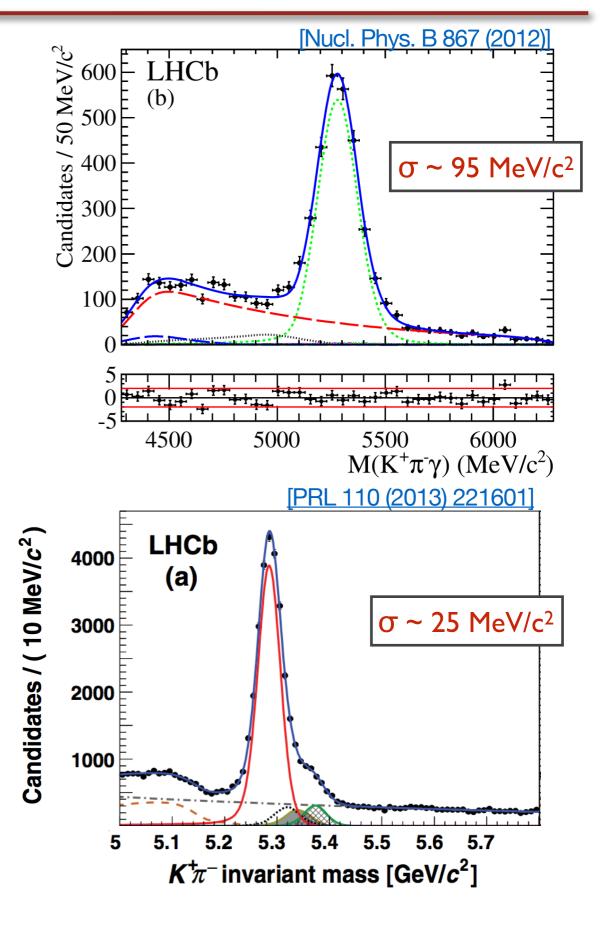
Fit pull values for realistic model:

Amplitude k	Magnitude a_k		Phase ϕ_k		
	$\mu_{ ext{pull}}$	$\sigma_{ m pull}$	μ_{pull}	$\sigma_{ m pull}$	
$ \begin{array}{c} K_1(1270)^+ \to K^*(892)^0 \pi^+ \text{ [D-wave]} \\ K_1(1270)^+ \to K^+ \rho(770)^0 \\ K_1(1400)^+ \to K^*(892)^0 \pi^+ \end{array} $	$egin{array}{c} 0.12 \pm 0.10 \ 0.08 \pm 0.09 \ -0.44 \pm 0.09 \end{array}$	$egin{array}{c} 0.97 \pm 0.07 \ 0.91 \pm 0.06 \ 0.95 \pm 0.06 \end{array}$	$egin{array}{c} -0.01 \pm 0.10 \ 0.02 \pm 0.11 \ 0.87 \pm 0.10 \end{array}$	$egin{array}{c} 1.02 \pm 0.07 \ 1.08 \pm 0.07 \ 1.06 \pm 0.07 \end{array}$	
$\begin{split} & K^*(1410)^+ \to K^*(892)^0 \pi^+ \\ & K^*(1680)^+ \to K^*(892)^0 \pi^+ \\ & K^*(1680)^+ \to K^+ \rho(770)^0 \end{split}$	$-0.45 \pm 0.09 \\ 0.04 \pm 0.09 \\ -0.02 \pm 0.11$	$egin{array}{c} 0.94 \pm 0.06 \ 0.94 \pm 0.06 \ 1.11 \pm 0.07 \end{array}$	$egin{array}{c} 0.06 \pm 0.10 \ 0.02 \pm 0.10 \ 0.02 \pm 0.10 \ 0.02 \pm 0.10 \end{array}$	1.04 ± 0.07 1.08 ± 0.07 1.05 ± 0.07	
$\begin{array}{c} K_2^*(1430)^+ \to K^*(892)^0 \pi^+ \\ K_2^*(1430)^+ \to K^+ \rho(770)^0 \end{array}$	$\begin{array}{c} 0.51 \pm 0.10 \\ 0.36 \pm 0.09 \end{array}$	$\begin{array}{c} 1.07\pm0.07\\ 0.98\pm0.07\end{array}$	$0.45 \pm 0.09 \\ -0.01 \pm 0.09$	$\begin{array}{c} 0.86\pm0.06\\ 0.94\pm0.06\end{array}$	
$ \begin{array}{c} K_2(1580)^+ \to K^*(892)^0 \pi^+ \\ K_2(1580)^+ \to K^+ \rho(770)^0 \\ K_2(1770)^+ \to K^*(892)^0 \pi^+ \\ K_2(1770)^+ \to K^+ \rho(770)^0 \\ K_2(1770)^+ \to K_2^*(1430)^0 \pi^+ \end{array} $	$egin{aligned} -0.39 \pm 0.10 \ 0.04 \pm 0.09 \ 0.08 \pm 0.11 \ -0.13 \pm 0.10 \ 0.17 \pm 0.10 \end{aligned}$	$egin{aligned} 1.03 \pm 0.07 \ 0.90 \pm 0.06 \ 1.11 \pm 0.07 \ 0.97 \pm 0.06 \ 1.05 \pm 0.07 \end{aligned}$	$egin{aligned} -0.06 \pm 0.11 \ 0.14 \pm 0.10 \ -0.10 \pm 0.12 \ -0.04 \pm 0.09 \ 0.05 \pm 0.10 \end{aligned}$	$egin{aligned} 1.10 \pm 0.07 \ 0.97 \pm 0.07 \ 1.21 \pm 0.08 \ 0.97 \pm 0.06 \ 1.01 \pm 0.07 \end{aligned}$	

EXPERIMENTAL CHALLENGES

- Mass resolution dominated by photon reconstruction
 - $\sigma \sim 95 \text{ MeV/c}^2$ for $B \rightarrow K^* \gamma$ decays, compared to $\sim 25 \text{ MeV/c}^2$ for $B \rightarrow K\pi$ decays.
- + Backgrounds:
 - Above transverse energies of 4 GeV, $\pi^0\!\rightarrow\!\gamma\gamma$ reconstructed as a single cluster in the calorimeter
 - Combinatorial: O(10) reconstructed photons per event





EXPERIMENTAL CHALLENGES

Without analysis improvements, many analyses would be systematics-limited by Run 5

Primary known/expected sources of systematic uncertainty:

- + Partially reconstructed background, due to large invariant mass resolution
 - Correlation between decay time and reconstructed mass in $B_s \! \rightarrow \! \varphi \gamma$ decays
 - Uncertainty in background modeling in A_{cp} and branching fraction measurements
 - Effects on angular distributions in $K\pi\pi\gamma$ decays

Detector effects

- Decay time resolution for C,S measurements in tagged $B_s \rightarrow \Phi Y$ analysis
- Detection asymmetry in A_{cp} measurement
- Modeling of acceptances
 - Main source of uncertainty for $\Lambda_b \rightarrow \Lambda^0 \gamma$ angular analysis