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Statement of Problem

� The function of molecules follow their structure. Hence 
importance of structure determination

� Traditional workhorse, x-ray crystallography, requires 
crystals, but not all molecules are cystallizable

� Crystallography relies on amplification due to scattering by 
many identical copies in identical orientationsmany identical copies in identical orientations

� One alternative is the single-molecule experiment 
discussed by other speakers

� The method we will describe may be used for structure 
solution for that problem

� There is also another alternative – scatter off many identical 
particles in random orientations and recover a single-
particle diffraction pattern from the angular correlations
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Cyanobacterial Photosystem I

P. Jordan et al.
Nature 411, 

909-917 (2001)

2.5 Å
resolution



Neurotransmission

When an action potential arrives at the end of the pre-synaptic axon (yellow), 

it causes the release of neurotransmitter molecules that open ion channels in 

the post-synaptic neuron (green). The combined excitatory and inhibitory 

postsynaptic potentials of such inputs can begin a new action potential in the 

post-synaptic neuron. 



Neurotoxins

Several neurotoxins, both natural and synthetic, are designed to block ion
channels. Tetrodotoxin from the pufferfish block action potentials by 
inhibiting the voltage-sensitive sodium channel; similarly, dendrotoxin from 
the black mamba snake inhibits the voltage-sensitive potassium channel. 
Such inhibitors of ion channels make effective neurotoxins, and have been 

considered for use as chemical weapons.



Insecticides and Anaesthetics

Neurotoxins aimed at the ion channels of insects have 

been effective insecticides; one example is the synthetic 

permethrin, which prolongs the activation of the sodium 

channels involved in action potentials. The ion channels 

of insects are sufficiently different from their human 

counterparts that there are few side effects in humans. counterparts that there are few side effects in humans. 

Many other neurotoxins interfere with the transmission of 

the action potential's effects at the synapses, especially 

at the neuromuscular junction.

Anesthetics work in a similar way, by blocking the 

transmission of nerve signals by blocking membrane 

protein ion channels.



Molecular Structure 
of Membrane Proteins

� Molecular structure of the membrane protein 
forming the K-channel was found in 1998 by 
Roderick MacKinnon and collaborators by x-ray Roderick MacKinnon and collaborators by x-ray 
crystallography

� Led to the 2003 Nobel Prize for Chemistry





Determine Structure of Membrane Proteins In 

Situ with X-Rays

Proteins will be in random locations in membrane and in random orientations.

Illuminate with x-rays part of membrane containing many proteins and 

record the diffraction pattern.



Projected Electron Density of 
K-Channel from Diffraction Pattern

Ideal projected structureSimulated diffraction pattern



Ideal and Recovered Projection of 
K-Channel Structure

Ideal projected structure From diffracted intensities, after 

100 iterations of phasing algorithm



Iterative Phasing Algorithm

Fourier Space Real Space
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From 3D Diffaction Volume 
to 3D  Electron Density
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Evaluate 3D diffraction volume from

Here Ilm is found from the matrix square root 
of B, and Olmm’ from the triple correlations, T, 
S is a real spherical harmonic. Evaluate S is a real spherical harmonic. Evaluate 
I(qx,qy,qz) on a cubic grid. Amplitudes 
|A(qx,qy,qz)|=√I(qx,qy,qz ). The electron density 
can be found by a 3D inverse Fourier 
transform
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The phases φq (and hence electron density of the molecule) are found 
by the iterative algorithm (described earlier) which alternately satisfies 
constraints in real and reciprocal space. 



Reconstruction of DPs of K-channel 
protein from angular correlations

Model DP

qmax=0.5 A-1

10 particles, random orientation

Originals

1 particle, 100 DPs 10 particles, 100 DPs 10 particles, 1000 DPs

Reconstructed from correlations



Alternative:
Calculation of
Autocorrelations
(Z. Kam, 1982)



1 particle

Simulated Pair Correlations

2 particles, 1000 DPs 10 particles, 1000 DPs



Reconstructing the 
Single-Particle Diffraction Pattern
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Can be done once the magnitudes of Im(q) are found from the pair
correlations and their signs are found from the triple correlations

The reality of I(q) ensures that I-m(q)=Im(q). For a flat Ewald sphere, 
Friedel’s rule, I(-q)=I(q), will be satisfied if only even m’s contribute.

If the single particle diffraction pattern has a mirror line, can choose 
the Im(q) to be real (not necessary to assume this).

Saldin et al., New J. Phys., in press.



Simulated single particle diffraction pattern

Key: Concentrate on Angular 
Correlations, Not Bare Intensities

Sample 10 particle diffraction patterns, randomly oriented



Pair Correlations (averaged over many short-pulse DPs)

Magnitude of Expansion Coeffs.
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Magnitude of expansion coefficients from the FT of the autocorrelations:

The non-uniqueness of the square root is manifested by the unknown phases, 

which need to be determined by something which is sensitive to the phases.



Signs of Expansion Coeffs.

Triple Correlations
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Can be done by an optimization routine

The last step uses the FTs BM(q,q’) of the cross correlations C2(q,q’).

Needed to determine correct registry of the intensities on different rings q



Triple Correlations for 
Phase Determination

Random phases of Im(q)

Correct phases from TM(q,q)

Diffraction Pattern from Model



Directly Calculated & Reconstructed DPs

Diffraction Pattern from Model

From correlations 
of single particle DP

From 100 DPs 
10 Particles per DP

From 1000 DPs 
100 particles per DP



Reconstructed Image

From the single particle diffraction pattern reconstructed from
average correlations from 100 DPs of each of which contained

10 particles in different random orientations



Experimental Test

EM image of metal rods which used for the test with 

soft x-rays. In the experiment they were not clumped as 

shown, but randomly oriented rods with random interparticle

distances.



Reconstruction of DPs of K-channel 
protein from angular correlations

Model DP

qmax=0.5 A-1

10 particles, random orientation

Originals

1 particle, 100 DPs 10 particles, 100 DPs 10 particles, 1000 DPs

Reconstructed from correlations



Measure angular correlations => No need 
to determine the orientations of the DPs
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3D intensity in (X,Y,Z) coordinate system

2D intensity on red Ewald sphere S1

Exploit the only symmetry of the problem:
SO(3) symmetry of random molecular orientations
J. Phys.: Condens. Matter 21, 134014 (2009)

Takes account of Ewald sphere curvature

2D intensity on red Ewald sphere S1
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2D intensity on blue Ewald sphere S2
(rotated by Euler angles Φ,θ,Ψ)

where the index p represents a DP specified by its orientation (Φ,θ,Ψ).



Input to algorithm

Angular correlations
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DP k

summed over all 
N DPs.

Note neither the 
magnitudes nor number
of such quantities grows
with the number of DPs
measured. The correlations just 
becomemore accurate as 
N increases.

If the scattering
angle is 2ζ, q=2κsinζ



Intensity in Lab Frame
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Information from Angular Correlations
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Great orthogonality theorem of
representations of SO(3) group

θ’’ is the angle between (θ,φ) and (θ’,φ’) 

This is an orientation-independent quantity characteristic of the
“diffraction volume” of an individual particle



Legendre Polynomials



Chignolin (world’s smallest protein)
10 residues - no symmetry



What do the corrrelations look like?
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These plots were calculated from simulations of diffraction patterns from 

a small protein (chignolin) of no symmetry and random orientations. Yet they

are remarkably simple and symmetric. They are consistent with the theoretical 

prediction                                            where



Extraction of Structural Information 
from Angular Correlations

[ ]∑=
l

lqqlqq BPJ ;'';' ''cosθφφIn the equation

The LHS (the angular correlations) may be extracted from the experimental data. On the 
RHS Pl(cosθ’’) is a known function, Therefore the coefficients Bqq’;l may be extracted by 
e.g. matrix inversion. The structural information resides in these coefficients, since
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What do these look like (for q=q’)?

Thus, the B’s can be extracted accurately from experimental data. How can the I’s be
extracted from the B’s?



Time-Evolution of a Molecular Structure 
(Proposed Experiment: J. C. H. Spence)

Schematic arrangement for gas electron diffraction. At B a fast-readout 
CCD operating at  20 HZ is sychronized with the photocathode. A free-expansion 
nozzle at A injects gas at low temperature.



Finding the Change 
in the Scattered Intensities
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Imagine a pump-probe experiment in which the DPs of
individual molecules are measured before application of a 
laser excitation (“dark structure”) and another DP of the same 
molecule is measured shortly after excitation (pump-probe
Experiment). If the excited structure is a small perturbation of 
a known dark structure, we may take the variation of
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Known. Thus δIlm(q) may be found by linear algebra. Then 
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Change in the Electron Density

Scattered intensity ( ) ( ) ( )qqq AAI
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Once the LHS known from experiment, since A(q) is the structure
factor of the known “dark structure”, the only unknown is
δρ(rj) , the change in the structure due to the excitation.
This may be found by solving the above linear equation.



General Solution

For each value of l, the Eq: ( ) ( )';' qIqIB lm
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where C is the matrix of the eigenvectors of the Hermitian
matrix B and [λ]D the diagonal matrix of the real eigenvalues.

Thus, in general:
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Thus I(q) may be determined to within a set of orthogonal matrices
O(l). How may these be found?
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matrix B and [λ]D the diagonal matrix of the real eigenvalues.
Tempting to identify I with ([√λ]DC), the “matrix square root”. 
However, note that B may also be written;
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Hence



One solution: 
consider also triple correlations
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Sum over k by assuming the diffraction patterns arise from all
possible orientations in SO(3).



Triple correlations
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Conventions:
(1) Superscript T denotes transpose
(2) Sum over repeated indices unless they appear on both sides of 

the equation.



Summary

� One of the major justifications for the development of a billion 
dollar x-ray free electron laser (XFEL) is the promise of the 
determination of the structures of individual protein molecules –
obviating the need for crystallization

� Aim to determine the high-resolution structure of a protein 
molecule from scattering by molecules in a water droplet injected 
into the x-ray beam

� Our proposal is to determine the 3D diffraction volume from the 
ensemble of diffraction data, without determining the orientations 
of the individual diffraction patterns in the reciprocal space of the 
molecule

� Needs reasonable structural homogeneity of different molecules 
(as do SAXS, NMR etc.)

� Method would work even if there were multiple particles in each 
droplet

� Would also work if x-rays focussed on a small number, e.g. 10, of 
molecules dissolved in a liquid.


