— jj@

UNIVERSITYof WISCONSIN

Crystallography without Crystals

Breaking the Crystallization Paradigm

Dilano Saldin

dksaldin@uwm.edu



Main Collaborators —

Valentin Shneerson — University of Wisconsin-Milwaukee
Hin-Cheuck Poon — University of Wisconsin-Milwaukee
John Spence — Arizona State University

Rick Kirian — Arizona State Univeristy

Kevin Schmidt — Arizona State University

Uwe Weierstall — Arizona State University

Henry Chapman — DESY

Malcolm Howells - LBNL



Statement of Problem S o

The function of molecules follow their structure. Hence
importance of structure determination

Traditional workhorse, x-ray crystallography, requires
crystals, but not all molecules are cystallizable

Crystallography relies on amplification due to scattering by
many identical copies In identical orientations

One alternative is the single-molecule experiment
discussed by other speakers

The method we will describe may be used for structure
solution for that problem

There is also another alternative — scatter off many identical
particles in random orientations and recover a single-
particle diffraction pattern from the angular correlations



Protein Crystallography - Phase Problem U“M

Fourier transform

‘Fq‘exp (i¢q) = Zuj exp(iq.r;)
j

Measured “Fql‘2 = ‘Fq”

Inverse transform

1
u; = ﬁ Z|Fq| exp(ig, ) exp(—iq.r;)
q

Not measured

Diffraction pattern
from a
protein crystal



Cyanobacterial Photosystem |

P. Jordan et al.
Nature 411,
909-917 (2001)

2.5 A
resolution



Neurotransmission UV\M
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When an action potential arrives at the end of the pre-synaptic axon (yellow),
it causes the release of neurotransmitter molecules that open ion channels in
the post-synaptic neuron (green). The combined excitatory and inhibitory
postsynaptic potentials of such inputs can begin a new action potential in the
post-synaptic neuron.




Neurotoxins

UWM
1

Several neurotoxins, both natural and synthetic, are designed to block ion
channels. Tetrodotoxin from the pufferfish block action potentials by
inhibiting the voltage-sensitive sodium channel; similarly, dendrotoxin from
the black mamba snake inhibits the voltage-sensitive potassium channel.
Such inhibitors of ion channels make effective neurotoxins, and have been
considered for use as chemical weapons.




Insecticides and Anaesthetics U“M

Neurotoxins aimed at the ion channels of insects have
been effective insecticides; one example is the synthetic
permethrin, which prolongs the activation of the sodium
channels involved in action potentials. The ion channels
of insects are sufficiently different from their human
counterparts that there are few side effects in humans.

Many other neurotoxins interfere with the transmission of
the action potential's effects at the synapses, especially
at the neuromuscular junction.

Anesthetics work in a similar way, by blocking the
transmission of nerve signals by blocking membrane
protein ion channels.



Molecular Structure UWM
of Membrane Proteins p—

Molecular structure of the membrane protein
forming the K-channel was found in 1998 by
Roderick MacKinnon and collaborators by x-ray
crystallography

Led to the 2003 Nobel Prize for Chemistry



Fig. 4 (above). Mutagenesiz studies on Shaksr
Mapping onto the KosA structure. Mutations in
the votage-gatec Shaker K- channel that affect
functicn are mapped to the equivalent positions in
KesA based on the sequence alignment. Twe
subunits o KosA are shown. Mutation of any of
the white sde cheins significantly alters the afinity
of agitoxin? or charybdotoxin for the Shaker <7
channeal [72). Changing ths yelow side chain af-
fects both agitowin? and TEA binding from the
extracelluler solution (14). This residue is the ex-
ternal TEA sita. The mustard-colored side chain at
the basze ofthe selectivity fiter sffects TEA binding
from the intracellular solution [the intemeal TEA site
(75]} The side chains colored green, whan mutat-
ed to cysteine, are modified by cysteine-resective
agents whather or not the cnanrel gate is open,
whereas those colored pink react only when the

channel s open (16). Finally, the residues colored
red [5G, meinchain ony)are absolutely required
for K+ selectvity ). This figare was prepared witk MCLSCRPT and RAS-
TER-3D. Fig. & (right. Molecular suriace of MosA and contour of the pore,
(&) A cutaway steregvizw cisplaying the solvem-accessiole surface of the K7
channel colored according to physical propeties. Blectrostatic potential was
calculated with the pregram GRASP, assuming an ionic strength equivalent
to 150 mi KC1 and distectric constants of 2 and 80 for protein and sobvent,
respactively. Side chaing of Lys, Arg, Gu, and Asp residues were assignac
singe posiive or negative charges as appropriate, and the surface coloratior
veres smoothly from blus in aress of high positive charge through white tc

rad in nagativehy charged ragions. Tha yelow areas of the surfacs ere colored
according to carbon aloms of the hydropbobic (or partly so) sde chains of
several semi-conserved residues in the inner vestioule [ Thr'® 1127°°, Phe™2,
Thr'@?, Alg18 Alg117 Wal"'S), The green CPK spheres represent K* ion
positions in the conducton pathway. (B) Sterecview of the entire intema
pore. Within & stick mocel of the channel structure is a tree-dimensiona
representation of the minimum radial distance from the center of the channel
pore to the nearsst van der Waals protein contacl. The display was created
with the program HOLE (34).

oL |/



Determine Structure of Membrane Proteins In

Situ with X-Rays

water-insoluble fatty acid portion

Proteins will be in random locations in membrane and in random orientations.

llluminate with x-rays part of membrane containing many proteins and

record the diffraction pattern.



Projected Electron Density of U‘/\M
K-Channel from Diffraction Pattern ——
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Simulated diffraction pattern |deal projected structure



Ideal and Recovered Projection of UV\M

K-Channel Structure —
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100 iterations of phasing algorithm



Iterative Phasing Algorithm

Fourier Space Start w/ random ¢,

U, = Z‘F(Obs)‘ei¢“e_iq'r"
J q
q

(obs)

—
‘F ei¢q _ ZM .eiq.rj
Constrain to measured ! i Constrain to e.g.

diffraction amplitudes expected object size

Provided {F} is oversampled w.r.t. Nyquist criterion, at end of iterations,
both sets of constraints satisfied. This tends to determine both the phases

of the complex {F}, and the the real {u;}



From 3D Diffaction Volume UWM
to 3D Electron Density ——

Evaluate 3D diffraction volume from

I(q) = IZ O L (Q)glm' ((Al)

Here |, is found from the matrix square root
of B, and O, from the triple correlations, T,
S is a real spherical harmonic. Evaluate
I(g,,9,,9,) on a cubic grid. Amplitudes

|A(q, 9,9,)=VI(q, g,,d, )- The electron density
can be found by a 3D inverse Fourier
transform

plr;)= %Z |A(q) expli, Jexp(-iqu;)

The phases ¢, (and hence electron density of the molecule) are found
by the iterative algorithm (described earlier) which alternately satisfies
constraints in real and reciprocal space.



Reconstruction of DPs of K-channel U‘/\M
protein from angular correlations ——

Model DP 10 particles, random orientation
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Reconstructed from correlations



1. THE 2ATTERN T COMERENT OVERAGING
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2 particles, 1000 DPs

1 particle

10 particles, 1000 DPs



Reconstructing the UWM
Single-Particle Diffraction Pattern ——

Circular Harmonic Expansion

Ig..q,)= Zl Jexplim)

where

q=\/61§+61§ ¢=tan_l(6]y,6]x)

Can be done once the magnitudes of | (q) are found from the pair
correlations and their signs are found from the triple correlations

The reality of /(q) ensures that /. (q)=I(q). For a flat Ewald sphere,
Friedel’s rule, I(-q)=I(q), will be satisfied if only even m’s contribute.

If the single particle diffraction pattern has a mirror line, can choose
the /_(q) to be real (not necessary to assume this).

Saldin et al., New J. Phys., in press.



Key: Concentrate on Angular U\/\M
Correlations, Not Bare Intensities —  —

Simulated single particle diffraction pattern

Sample 10 particle diffraction patterns, randomly oriented



Magnitude of Expansion Coeffs. UM

Pair Correlations (averaged over many short-pulse DPs)

C,(q:q' . Ap) < - S0 -1 @0, +A0)-1,,.(q >}>

o J

=N Zl exp(zMA@)

M =0

FT of C5(q,9;A9))

1 N . * 1
ENZCZ q,9;A@, eXP( lMA(Dl):IM(Q)IM(Q)
=1

Magnitude of expansion coefficients from the FT of the autocorrelations:

1, (q) =B, (g.9)

The non-uniqueness of the square root is manifested by the unknown phases,
which need to be determined by something which is sensitive to the phases.



Signs of Expansion Coeffs. &=

Triple Correlations

C,(q.q:A0)= <;Z¢I(q,¢,- )21(%(0,- +Ag, )>

g J=l1
FT of Triple Correlations
1

¥ S C,(g.q: Ap)expliMAp)

o =1

T,(q.q9)=

B, (q.4,) Z{ B, v a.q,) Bm(q,ql)}

1) 1 (@)™ |1, ()

The last step uses the FTs B,,(q,q’) of the cross correlations C,(q,q’).
Needed to determine correct registry of the intensities on different rings g

m

Unknown phases determined by comparison with Tﬁgexp)(q,q)
Can be done by an optimization routine



Triple Correlations for U\/\M

Phase Determination —
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Diffraction Pattern from Model

04 03 02 01 0o 01 02 03 04

04 03 02 01 0 01 02 03 04 44 03 402 41 0 01 02 03 04

From correlations From 100 DPs From 1000 DPs
of single particle DP 10 Particles per DP 100 particles per DP



Reconstructed Image —
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From the single particle diffraction pattern reconstructed from
average correlations from 100 DPs of each of which contained
10 particles in different random orientations



Experimental Test

EM image of metal rods which used for the test with
soft x-rays. In the experiment they were not clumped as
shown, but randomly oriented rods with random interparticle

distances.



Reconstruction of DPs of K-channel U‘/\M
protein from angular correlations ——

Model DP 10 particles, random orientation
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Measure angular correlations => No need U‘/\M
to determine the orientations of the DPs =

Exploit the only symmetry of the problem:
SO(3) symmetry of random molecular orientations
J. Phys.: Condens. Matter 21, 134014 (2009)

3D intensity in (X,Y,Z) coordinate system
I((]O) = Z Ilm (Q)Slm ((j)
Im

2D intensity on red Ewald sphere S1
I m

Takes account of Ewald sphere curvature

2D intensity on blue Ewald sphere S2
(rotated by Euler angles 9,0,¥)

1) =% 3 82 1,(0)5, (a/2-sin” (q/26)0)

where the index p represents a DP specified by its orientation ($,0,¥).



Input to algorithm

Angular correlations

1
Jqq';¢¢' = ﬁ Z {I;Zi) L x5 (q )}{Icgpa2 —Lguxs (C]')}
P

between two pixels
on each DP p, but
summed over all

N DPs.

Note neither the

maghnitudes nor number

of such quantities grows

with the number of DPs
measured. The correlations just

becomemore accurate as If the scattering
N increases. angle is 2¢, q=2ksing




Intensity in Lab Frame sty

Accounting for Ewald
sphere curvature -

Curved ES

\ 8 q/2
B Flat ES

19 =3 3 A2 1, (@), (2/2-sin" g/ 2xc).9)

I mm'




Information from Angular Correlations = o

1
JqCI‘;¢¢‘ = ﬁ Z {I c(/;) — L gy (q )}{I (5{;)' — L guxs (q ')}

S S AP 1,.(9)S,.[00).e]>. > A 1, ()5, [6' (), ¢]

1
N p lio me l‘¢0 mll‘m"

T .y,
Q(q)zg—sin_l(q/Zl() (9'(q'):§—s1n l(q /2k)

iz A(lp) A(lzg)m = 1 5,6 .0, . Great orthogonality theorem of
NA&T(20+1) "™ ™ representations of SO(3) group

Jqq';¢¢' = Z r qq9 99"l b qq"l

[#0

F

IS %P, [cos 6?"] 0" is the angle between (0,¢) and (0°,¢’)
. T

qu’;l = Z I, (Q)Ilm (Q')

This is an orientation-independent quantity characteristic of the
“diffraction volume” of an individual particle



Legendre Polynomials i

2 1
no=0-------
=1 ==

15 n=2 ——— |
n=4 ===




Chignolin (world’s smallest protein)
10 residues - no symmetry




What do the corrrelations look like?

UM
R =1
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These plots were calculated from simulations of diffraction patterns from
a small protein (chignolin) of no symmetry and random orientations. Yet they
are remarkably simple and symmetric. They are consistent with the theoretical
prediction .. =>'B, . Plcosd"] where

1

cos8"'=cosB(q)cos 8'(q') +sin 8(g)sin 8'(¢')cos(@g —¢')  6(q)= % —sin~'(¢/2x)



Extraction of Structural Information
from Angular Correlations

UM
R =1

In the equation J ., = > P[cos&"|B, .,
l

The LHS (the angular correlations) may be extracted from the experimental data. On the
RHS P,(cos6”) is a known function, Therefore the coefficients B, may be extracted by
e.g. matrix inversion. The structural information resides in these coefficients, since

qu';l = Z 1, (Q)Izm (q')

What do these look like (for q=q°)?

1

B,(q.q) (normalized)

=
=]
|

=
=2
|

=
=
|

02

0 2 4 6 8 10 12 14 16 18

q=0.15(2m)A"

Byi(g.q) (normalized)

=
-
|

=
1%}
|

=
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|

=]

q=0.5(2m)A"

=)

1

8

N U
12 16 20 24 28 32 36

Thus, the B’s can be extracted accurately from experimental data. How can the I's be

extracted from the B’s?



Time-Evolution of a Molecular Structure U‘/\M
(Proposed Experiment: J. C. H. Spence) ]

Photocathode Lenses R.F. Cavity

/! s

Laser / Omega Filter CCD

Schematic arrangement for gas electron diffraction. At B a fast-readout
CCD operating at 20 HZ is sychronized with the photocathode. A free-expansion
nozzle at A injects gas at low temperature.



Finding the Change UWM
in the Scattered Intensities S——

Imagine a pump-probe experiment in which the DPs of
individual molecules are measured before application of a
laser excitation (“dark structure”) and another DP of the same
molecule is measured shortly after excitation (pump-probe
Experiment). If the excited structure is a small perturbation of
a known dark structure, we may take the variation of

B, = lem (Q)Ilm (Q')

to find
B, = > A1, (0)d,,(¢)+d,,(a)l,. ()}
LHS is measurable in an experiment. |(q) is

Known. Thus &l,,,(q) may be found by linear algebra. Then
ol(q) may be constructed from

CUDILAPACY



Change in the Electron Density S o

Scattered intensity I(q)=A"(q)A(q)

Intensity change  d(q)=A"(q)A(q)+ A (q)Alq)
Amplitude change ~ 9A(q)= Z oplr, Jexpligr,)

Alg)=), dplr, A’ (@)expliqr, )+ cc|

Once the LHS known from experiment, since A(q) is the structure
factor of the known “dark structure”, the only unknown is

6p(r;) , the change in the structure due to the excitation.

This may be found by solving the above linear equation.



General Solution UV\M

For each value of |, the Eq: B, = lem (q)llm (q)
Im
may be rewrittenas B, => 1 1, i.e.asthematrix Eq. B =1"1
which also may be written: B = C"[4],, C = (CT lﬂJD X[ﬂJD C)

where C is the matrix of the eigenvectors of the Hermitian
matrix B and [A], the diagonal matrix of the real eigenvalues.

Tempting to identify | with ([VA],C), the “matrix square root”.
However, note that B may also be written;

B=C"[+/1],070[/1],C
Thus, ingeneral: = ()[\/Z]DC

Im Im

Thus I(q) may be determined to within a set of orthogonal matrices
O, How may these be found?



One solution: U‘/\M

consider also triple correlations —  —

Definition:

Q¢ q ¢ Z {Iq¢ SAXS } {Ic(1k¢) —Lgxs (q')}

I(l;) = ZDz(rﬁ;L'(anBa 7)Ilm'(q)Ylm [‘9(61),¢]

1
limm

- Z Dl%@'(“, By, (g, 0(q)¢]

1
Limym

Sum over k by assuming the diffraction patterns arise from all
possible orientations in SO(3).



Triple correlations —

T oo =D FypiT oy 2Z.Kam,J. thoer. Biol. 82, 151 (1980)
[#0

1
where F...L=—P|cos@"
o'l Az 1[ ]

and qu';l E];(q? q'): Il (Q’m)*‘/l(m’ q')

V.(m,q') =W (l,m,,Lm,,1— m)Il1 (q',m, )112 (q',m,)
Conventions:

(1) Superscript T denotes transpose
(2) Sum over repeated indices unless they appear on both sides of

the equation.
L1 j[lllzl ] \/ (21, +1)(21, +1)(21 +1)

000 \ mm, —m 47

W(l1m1 oy, [ — m)= (- 1)m£



Summary S o

One of the major justifications for the development of a billion
dollar x-ray free electron laser (XFEL) is the promise of the
determination of the structures of individual protein molecules —
obviating the need for crystallization

Aim to determine the high-resolution structure of a protein
molecule from scattering by molecules in a water droplet injected
into the x-ray beam

Our proposal is to determine the 3D diffraction volume from the
ensemble of diffraction data, without determining the orientations
of the individual diffraction patterns in the reciprocal space of the
molecule

Needs reasonable structural homogeneity of different molecules
(as do SAXS, NMR etc.)

Method would work even if there were multiple particles in each
droplet

Would also work if x-rays focussed on a small number, e.g. 10, of
molecules dissolved in a liquid.



