Latest and greatest of flavour tagging

Janik von Ahnen

Krisztian Peters, Marco Rimoldi, Chris Pollard Loic Valery, Jonathan Burr

November 28, 2019

Why are *b*-jets interesting?

Hbb+MET

In 6 2 2HOM In 193

m, [GeV]

ts / 5 GeV

Data/SM 1. ATLAS Preliminary

ttH

ATLAS

(5 = 13 TeV, 35.1 fb¹ tītī (SM)

> Expected ± 10 Expected ± 2n

- Observed

85% CL limit on $\mu = \sigma^{(i)} \sigma^{(i)}_{cut}$

ww

g coccocc

g mmm

ATLAS

Single lep. / OS dilep

SS dilep. / trilep

Combine

What are *b*-jets?

Key properties:

- Significant *b*-hadron lifetime (~1.5 ps)
 - \implies secondary vertex
- Significant *b*-hadron mass
- Can contain leptons
- Contains ~80 % of the intial b-hadron energy

b-jet identification algorithms

- MV2: Based on BDT
- DL1: Feed-forward Neural Network

Janik von Ahnen (DESY-Hamburg)

Calibration of *b*-tagging algorithms

- MC modeling is not perfect
- *b*-taggers make heavy use of correlations
- Measure *b*-tagging efficiency in data

What are variable-R track jets?

• Clustering tracks of the inner detector with anti-*k*_t

$$R
ightarrow R_{eff}(p_T) = rac{
ho}{p_T}$$
 $ho = 30 {
m GeV}, R_{min} = 0.02, R_{max} = 0.$

*Also interesting for low p_T since EMTopo jets can only be reconstructed down to \sim 20 GeV

b-tagging efficiency calibration for VR-track jets

- Goal: Select a sample with high fraction of *b*-jets without applying *b*-tagging (avoid bias)
- \implies di-leptonic (e-mu) $t\bar{t}$

New sideband-fit method

 Uncertainy on background (i.e. non b-jets) is large
 ⇒ Use SR/CRs based on m_{j,l}

• The fit extracts the *b*-tagging efficiency in data

New sideband-fit method

- Statistical uncertainty increases in the sideband-fit due to addition of CRs
- SFs with modeling uncertainties (i.e. flavour composition uncertainty):

New fit method reduces the modeling uncertainty by a factor $\sim 2!$

More data \implies More bins

Last binning was used for 80 fb⁻¹ but now we have 140 fb⁻¹ \implies We can use a finer binning ($N_{bins}: 5 \rightarrow 7$)

More bins reduce the total uncertainty!

• $\sim 2\%$ uncertainty on SFs \implies precision measurement!

Retraining campaign

The *b*-tagging algorithms have been improved and retrained for the VR-track jets (previous: MV2, future: DL1r)

Significant improvement for all *b*-tag efficiencies!

High- p_T *b*-jet calibration (Loic Valery + students)

 Calibration using di-leptonic tτ̄ is limited by statistics at high *p*τ

• Single-lepton *t* \overline{t} events have a higher branching ratio

High- p_T *b*-jet calibration (Loic Valery + students)

- Good data/MC agreement

Calibration can reach very high p_T !

$Z+\gamma$ (Jonathan Burr + students)

- Motivation: Many analysis rely on identifying Higgs bosons (also X→ bb̄)
- Target: measure tagging efficiency of $Z \rightarrow b\bar{b}$
- $Z \rightarrow b\bar{b}$ is very similar to $H \rightarrow b\bar{b}$ but has a much higher cross section
- Use Z(→ bb)γ events to calibrate a true double b-tagger (expected uncertainty ~20 %)
- Status: Fitting strategy being developed using MC-based templates

Summary

b-tagging efficiency calibration for VR track jets using di-leptonic *tī* events

High-p_T calibration with tag & probe in semi-leptonic tt

Backup

Retraining campaign

More on retraining campaig

R. Teixeira de Lima

Event selection

- Boosted topology
 - Large R Jet $p_T > 300 \,\text{GeV}$
 - Large R jet mass > 100 GeV
 - Lepton $p_T > 70$ GeV
 - MET > 70 GeV
 - $\blacktriangleright |\Delta \phi(t_{\rm had}, t_{\rm lep})| > 1$
 - At least one of the small R Jets matched to the large R Jet has to be b-tagged at 77% WP
- Probe jet: the jet closest to the lepton

4/22

Fit Strategy

- Fit on m_{lj} or m_{large-Rjet} spectrum for each p_T bin for events that pass/fail b-tagging requirement on the probe jet, done with TRExFitter
- b-tagging efficiency, signal normalisation and background normalisation are left as free parameters

QT update: High-p_T b-jet calibration

Fit Strategy - Regions Definition

Fit Strategy - Fit Parameter

b-tagging efficiency

- Efficiency in "PASS" region
- Inefficiency in "FAIL" region
- Free floating parameter
 - \blacktriangleright $t\bar{t}(b)$: signal
 - $t\bar{t}(c/I)$: for the probe jets coming from radiation
 - ► *W*+jets: different process
- Constrained parameter
 - Single-top
 - Other backgrounds
 - Gaussian constraint (50%)

QT update: High-p_T b-jet calibration

Region Merging

- ▶ Increase the number of events in *m*_{large-R jet} by:
 - Merging the PASS/FAIL regions
 - Should not affect the efficiency due to the low signal
 - Could help to better discriminate the background against the signal
 - Merged regions are background enriched

mlj-max distributions

250-600 GeV

Previous *b*-jet efficiency calibration (mlj cut fit)

- b-tagging efficiency is determined by perfomring a combinatorial likelihood fit.
- The likelihood function is the product of per event based likelihood functions.
- The relative fractions of flavours (bb, bl, ll) are taken from MC.

New sideband-fit method

 The flavour composition has been the biggest systematic uncertainty in previous calibration due to the big uncertainties in the tt modelling

Reminder: Deriving rewighting factors

Steps:

- Fit the Data/MC slope up to 150 GeV (linear fit)
- Take Data/MC ratio as weight for events from 150 – 250 GeV (in 10 GeV bins)
- Add these weights to all events before applying mlj-cut

pt reweighting with new factors

Old factors

New factors

Q: Should this be done per campaign or just once for the combination?

November 28, 2019 13 / 13