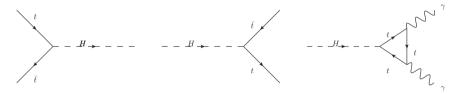


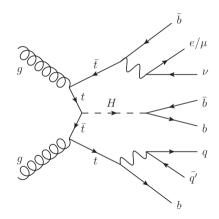
Full run-2 measurement of ttHbb at 13 TeV DESY ATLAS Common Group Meeting


Filip Nechanský, Thorsten Kuhl, Timothée Theveneaux-Pelzer

November 28, 2019

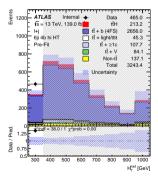
Introduction

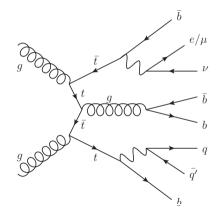
- In the Standard Model (SM) the Higgs coupling proportional to mass of the fermion, top the heaviest = the strongest coupling
- Three ways to study such coupling: Higgs production, Higgs decay and loops ...



... top too heavy to be a decay product of Higgs, loop only indirect measurements (other contributors to such loop)

- Production $(t\bar{t}H)$ the only feasible way to directly measure the top-Higgs coupling
- Spring 2018 CMS observation of the *tt* process (Phys. Rev. Lett. 120, 231801 (2018)) ...
 ... ATLAS was not far behind (Phys. Lett. B 784 (2018) 173)

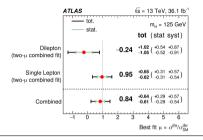

The $t\bar{t}Hb\bar{b}$ analysis at 13 TeV


- $t\bar{t}H$ many decay channels, showing only $t\bar{t}H(H o b\bar{b})$
- $t\bar{t}Hb\bar{b}$ possible to reconstruct the $t\bar{t}H$ kinematics, difficult due to combinatorics \implies use of MVA
- ttHbb currently studied in four channels:
 - Dilepton
 - Single lepton resolved
 - Single lepton boosted
 - All-hadronic
- Will focus on single lepton resolved channel (6 jets, 1 lepton and 4 b-jets) and dilepton channel (4 jets, 2 leptons and 4 b-jets)
- Main difficulty: modelling of the dominant background

Dominant background

- Non-reducible background from the $t\bar{t}b\bar{b}$ (gluon to $b\bar{b}$ pair)
- B-tagging not perfect, contribution from $t\bar{t}$ +jets in general
- Dividing $t\bar{t}$ based on the flavour of additional jets:
 - $t\overline{t}+\geq 1b$ at least one additional b-hadron
 - ▶ $t\overline{t}+\geq$ 1c no add. b-hadron, at least one add. c-hadron
 - $t\bar{t}$ +light the rest

- There is a large number of MVAs used in the analysis, here only those relevant to the talk
- More detailed example of MVA usage in the analysis in the next talk by José :)


Reconstruction BDT

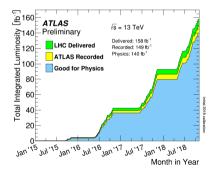
• BDT used to reconstruct event kinematics (e.g. Higgs $p_{\rm T}$) from reconstructed objects (jets/b-jets/leptons)

Classification BDT

- Takes output from the other MVAs to make a single discriminant between the signal and background
- Used as a fit variable in the signal region

Paper results (Phys. Rev. D 97 (2018) 072016)

- 2015+2016 data only
- Single lepton (resolved+boosted) and dilepton channel
- 1.4 σ observed significance, 1.6 σ expected
- Systematically limited in both channels


Dominant systematic uncertainties (combined):

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
Total systematic uncertainty	+0.57	-0.54
Total uncertainty	+0.64	-0.61

- $t\bar{t} +\geq 1b$ modelling
- Low Monte Carlo (MC) statistics (influences the modelling unc. as well)
- b-tagging and jet calibration uncertainties

$t\bar{t}Hb\bar{b}$ analysis with full run-2 dataset [Glance]

- $\bullet~\approx 4\times$ the data statistic w.r.t. previous paper
- Improved MC statistics

- New improved reconstruction software
- New recommendations and calibrations
 - New b-tagging
 - New jet calibration

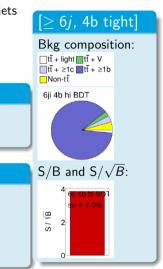
Fit regions

- Jet multiplicity not well modelled regions divided based on number of jets
- Also divided based on the b-tagging:
 - 4b (3b) tight: at least 4 (3) b-jets @ 60% efficiency
 - 4b (3b) loose: at least 4 (3) b-jets @ 70% efficiency (veto on tight)

Single lepton resolved regions

All regions are fitted as a function of the Classification BDT

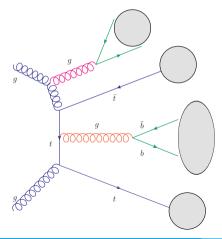
● [=5j, 4b loose], [=5j, 4b tight], [≥ 6j, 4b loose], [≥ 6j, 4b tight]


Dilepton regions

Regions with a single bin:

● [=3j, 3b tight], [≥4j, 3b loose], [≥4j, 3b tight]

Regions fitted as a function of the Classification BDT:


• [\geq 4j, 4b loose], [\geq 4j, 4b tight]

Modelling of tt+b (dominant background)

Two possible predictions of the $tt+\geq 1b$ considered:

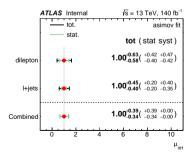
- ttbar 5 flavour scheme (5FS): additional massless b quarks come from parton shower
- ttbb 4 flavour scheme (4FS): 2 massive b-quarks in the matrix element (NLO)

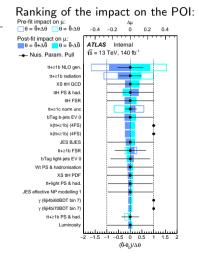
ttbb 4FS samples

ttbb 4FS: better agreement with data then 5FS

- Powheg+Py8 ttbb (current nominal)
- Sherpa ttbb (only currently available alternative generator)
- Variations of var3c(α_s^{ISR}), μ_R/μ_F , α_s^{FSR} (ISR/FSR)

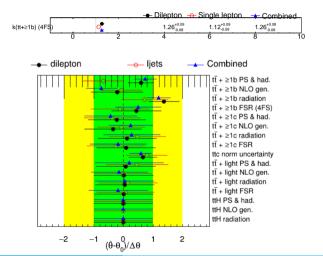
ttbar inclusive 5FS samples


Used to estimate additional unc. on the 4FS:


- Powheg+Py8 (reference sample)
- aMC@NLO+Py8 (NLO matching systematic)
- Powheg+Her7 (PS&had. systematic)

Filip Nechanský

ASIMOV fit


- Fit of MC to pseudodata build based of the same MC
- Done to show impact of systematics and expected sensitivity __
- Parameter of interest ttH: normalization $\mu_{ttH} = \sigma^{measured}/\sigma^{SM}$
- ttb free floating normalization k(tt + b)
- Expected significance around 3
- Dominant systematic NLO Gen Matching (aMC vs PP8)

Background only fit to data in unblinded BDT bins

- $\bullet\,$ Blinding of all bins with S/B> 5%
- To estimate background modelling fit all unblinded bins (without the signal sample)
- Difference in ttb normalization and ttb PS due to strong anti-correlation in I+jets only
- Is being investigated
- Otherwise comparable pulls

Pre- and post-fit plots (I+jets)

Data 2102.0

light/ttt 45.3

tī + V 84.1

Non-ti 137.1

Total 3243.4

04 06 08

3348.0

0.03

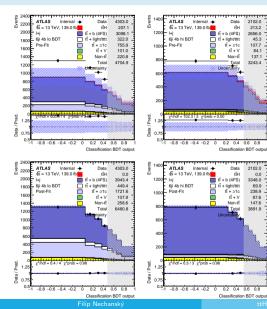
238.9

147.6

3801 0

Data 2102.0

tī + V 87.6

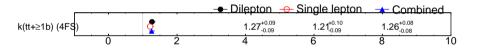

Non-ti

tīH 0.0

tīH 2132

2656.0

107.7

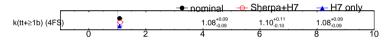


- Showing $[\geq 6j, 4b \text{ loose}], [\geq 6j, 4b \text{ tight}]$ regions
- Significant reduction in the uncertainties
- Good post-fit agreement

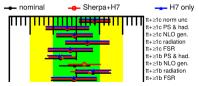
"Realistic" asimov fit: Channel comparison and combination (WiP)

• Procedure:

- Take NP pulls from Data background only fit
- Oreate ASIMOV data based on these shifts
- Perform ASIMOV fit to the "realistic" asimov dataset



- Comparable performance between channels
- Medium significance: classical asimov 3.01, "realistic" 2.71, only 10% difference


Alternative modelling studies

aMC seems to be NOT favoured by data \implies drop it? Switch to Sherpa 4FS?

Example: aMC+H7 vs Sherpa+Herwig7 vs Sherpa only

- Comparable performance of different models in data BONLY fits
- Vastly different sensitivity!
- aMC is never pulled, only constrained...

-		
	<u> </u>	
l	Y.;	
	<u> </u>	
	-	

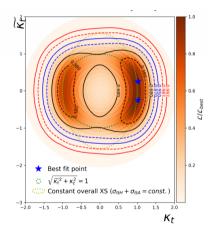
JES pileup p topology JES pileup pT term JES pileup offset NPV JES pileup offset µ JES flavour response JES flavour composition

Expected significance

- aMC+H7: 3.17
- SH+H7: 4.26
- H7 only: 4.28

(slightly older results)

CP odd analysis (will be published separately)


Last update [Emanuel Gouveia, Ana Luísa Carvalho, Nicolas Scharmberg]

• In Standard Model *t*t̄*H* coupling is CP even, BSM allows for CP odd or mixed coupling

 $\begin{aligned} \mathcal{L}_{tth} &= y_t \bar{\psi}_t \kappa'_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t h \quad \sigma = \kappa'_t{}^2 (\cos^2 \alpha \sigma_{even} + \sin^2 \alpha \sigma_{odd}) \\ \mathcal{L}_{tth} &= y_t \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t h \qquad \text{if} \quad \sigma = \kappa_t{}^2 \sigma_{even} + \tilde{\kappa}_t{}^2 \sigma_{odd} \end{aligned}$

- Many discriminating variables, requires Higgs/top reconstruction
 - \ldots but we do that anyway
- Fitting in inclusive 4b@70% regions, further divided by Class. BDT from nominal analysis
- CP-BDT trained to better distinguish between odd/even

Summary

- Observation of ttH last year!
- ttHbb one of the "smaller" channels, challenging background
- Use of multivariate algorithms to separate signal from background
- Using Pow+Py8 ttbb 4FS sample as nominal sample for dominant background
- tt+jets modelling still leading systematics optimizing still in progress!
- EB created, first meeting being scheduled
- CP-odd BSM analysis developed in parallel
- ... and there is more (see backup)
 - Single lepton boosted channel
 - All hadronic analysis
 - Simplified template cross-section interpretation (STXS) in Higgs p_{T}

Backup slides

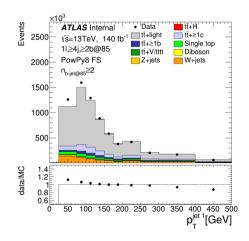
tt+HF categorisation [Timothée]

 $\bullet\$ tt+jets process subdivided at truth level depending on origin of the additional jets

• First match not-from-top hadrons to particle-level jets:

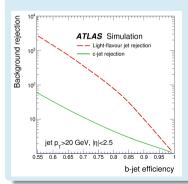
Particle-level jet p_{T}	> 15 GeV
Particle-level jet $ \eta $	<2.5
Hadron p_T	$>5~{ m GeV}$
Jet-Hadron matching	$\Delta R < 0.4$

• Then, count the number of jets matched to not-from-top HF hadrons:

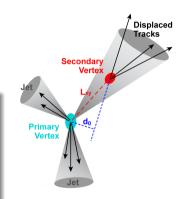

process	# jets	w/ # hadrons		
$tar{t}+\geq 1b$	≥ 1	$\geq 1b$		
$t\overline{t} + b(MPI/FSR)$		all <i>b</i> -jets from MPI/FSR		
$t\overline{t}+b$	=1 $=1b$			
$t\overline{t}+bb$	= 2	2 = 1b		
$t\overline{t} + B$	= 1	$\geq 2b$ (\geq 1b with $p_{ m T}$ threshold)		
$tar{t}+\geq 3b$		other $t\overline{t}+\geq 1b$ events		
$tar{t}+\geq 1c$	≥ 1	$\geq 1c$		
$t\overline{t} + ext{light}$	other tt+jets events			

• For 4FS samples there is for technical reasons no mpi/fsr classification is mpi/fsr significant in 5FS? Will answer later ...

Monte Carlo - filtered samples


- Solution to MC stat problem cannot just request super large samples, we need to be more clever
- We are mostly limited by tt+b but in pure sample its contribution is rather small
 - \implies Filter the tt+b during generation.
 - \implies Get lots of stats where it matters!
 - \implies ????
 - \implies Profit!

Full run 2 plot:

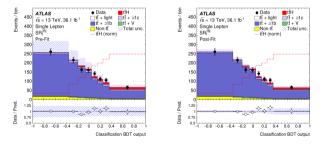


Interlude - b-tagging

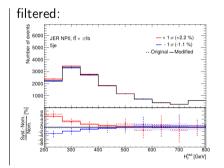
- b-quarks hadronize to b-hadrons with relatively large lifetime
- Identification using e.g. secondary vertex (few mm from PV)
- MV2c10 algorithm exploits all available information to discriminate between b-jets, c-jets and light-jets

- 4 b-tagging working points
- Based on signal efficiency: 60%,70%,77%,85%
- Either inclusive or in bins (60-70%,70-77%, etc)
- Trade-off between efficiency and background rejection

... is a topic for an entire lecture, but in a nutshell:


- Our models always have a Parameters of Interest (POI) and Nuisance Parameters (NP)
 - Example of POI normalization of signal, in our case: $\mu_{ttH} = \sigma^{measured}/\sigma^{SM}$
 - \blacktriangleright Nuisance parameters would be e.g. normalizations of the tt+b and tt+c subcomponents
 - In most cases all systematics are a nuisance ...
- Maximizing likelihood to obtain best estimation of all the parameters
- Can lead to a shift in the central value (so-called pull) and in change of the uncertainty (constrain) of POIs and NPs!
- Basically we can use data to constrain systematic uncertainties

Second interlude - fitting software


- Profile likelihood fit done in all regions together
- Done in TRExFitter fitting tool (former TtHFitter, used to be ttH specific)
- Build upon RooStats, all is done using convenient config file (though little bit of a black box)
- Useful when managing large number of systematics/samples/regions

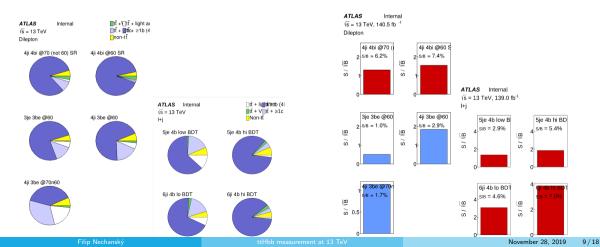
Example of pre- and post-fit plots (here for the tightest region with 6 jets and 4 b-jets at 60% WP):

Filtered samples and statistical uncertainty

Older plot for one of the systematics:

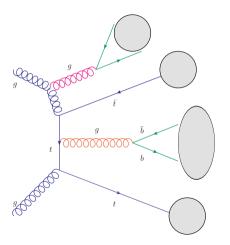
Here statistical uncertainty significantly reduced X two times larger syst. uncertainty for filterered!

Multivariate techniques

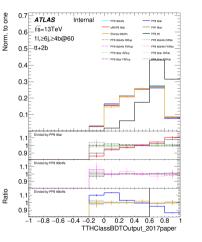

... not gonna pretend I understand half of these

- Classification Boosted Decision Tree (BDT) used to further discriminate between signal and background
- There are three independent stages used as input for the Classification BDT:
 - Reconstruction BDT builds Higgs and top candidates
 - Likelihood Discriminant (LHD) uses pdfs for several variables for signal and all backgrounds and based on them tries to assign signal probability.
 - Matrix Element Method (MEM) exploits full matrix element information to distinguish signal and background
- BDT done in the TMVA root package
- Output variable used for fits in the signal regions

SFX: Menacing


Regions composition

- Most regions dominated by ttb subcomponent
- One "looser" region in dilepton to better control ttc sub-component



Event generation

... compressed into one slide

- Matrix Element (ME) the hard scattering process, generated with certain precision (LO,NLO)
- Parton shower emission of additional partons in QCD/EW
 - Initial state radiation (ISR) and Final state radiation (FSR)
 - Needs to be interfaced with radiation in the Matrix Element to remove overlap (matching)
- Fragmentation produces additional partons to create colorless objects which then hadronize

- Normalized to one, component with two b-jets (+ttH incl.)
- Generally small differences, PP8 5FS and 4FS two "extremes"
- 4FS samples more signal-like compared to other samples

Modelling of other samples

ttc	ttlight	ttH
 ME NLO Matching	 ME NLO Matching	 ME NLO Matching (aMC) Parton Shower (H7) ISR/FSR (int. weights) YR4 XS unc.
(aMC@NLO) Parton Shower (H7) ISR/FSR (internal weights) 100% norm. unc.	(aMC@NLO) Parton Shower (H7) ISR/FSR (internal weights) 6% norm. unc.	(QCD/PDF)

$t\bar{t}$ modelling and associated uncertainties

Nominal

- Before: Pow+Py8.210 (5F)
- Now: Pow+Py8.230 (5F)

NLO matching

- Before: Sherpa 2.2.1 (5F), diff. order in pQCD and matching, also different PS&hadronisation
- Now: aMC@NLO+Py8.230 (5F)

PS and hadronization

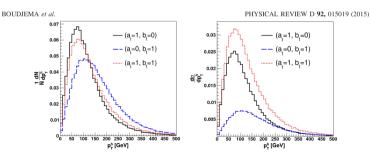
- Before: Pow+Hw7.01
- Now: Pow+Hw7.04

ISR/FSR

- Before: Pow+Py8.210 var3c(α_s^{ISR}), μ_R/μ_F , hdamp
- Now: Pow+Py8.230 var3c(α_s^{ISR}), μ_R/μ_F , α_s^{FSR}

Boosted Select	ion	JG∣U		
selections	Boosted			
# small jets	≥ 4			
# b-tagged 85% jets	≥ 3			
	Higgs candidate: 1 reclustered jet			
reco p_T [GeV]	300			
mass[GeV]	[100-140)			
R=0.4 subjets b-tagged 85%	==2			
P(true Higgs)	≥ 0.6			
	Hadronic Top candidate: - (no special cut)			
	Leptonic Top: - (no special cut)			
 First, searching for <i>Higgs candidate</i>: if ∃ > 1 ^{choose}/_{choose} that with mass closest to Higgs mass Then, searching for <i>HadrTop cand</i> (for reconstruction see Backup) Finally, searching for <i>Leptonic Top</i> (for reconstruction see Backup) Higgs, Hadronic Top and Leptonic Top jets don't overlap 				
19/11/2019	Eftychia Tzovara	5		

Modelling of other samples

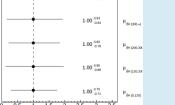

ttc	ttH	Single top
 ME NLO Matching (aMC@NLO) Parton Shower (H7) ISR/FSR (internal weights) 	 ME NLO Matching (aMC) Parton Shower (H7) ISR/FSR (int. weights) YR4 XS unc. (QCD/PDF) 	 ME NLO matching Parton shower 5% XS unc.
• 100% norm. unc.		Other top
ttlight	Bosonic	tW
 ME NLO Matching (aMC) Parton Shower (H7) ISR/FSR (internal weights) 6% norm. unc. 	W+jets • 40% incl. XS unc. • 40% HF XS unc. Z+jets • 35% XS unc. (3j,4j) diboson • 50% XS unc.	 DS vs. DR ttV YR4 CS unc. (PDF/QCD) 4-top 50% XS unc.
Filip Nechanský	ttHbb measurement at 13 TeV	November 28, 2019 15 / 15

$t\bar{t}H$ coupling CP

- In Standard Model *t*t*H* coupling is CP even, various BSM model allow for CP odd or mixed coupling
- Additional parameter α in the lagrangian:

$$f_{ht\bar{t}} = y_t \kappa \bar{t} (\cos \alpha + i \sin \alpha \gamma_5) th$$
 $\cos \alpha = 0 \equiv \text{pure CP-odd}$
 $\cos \alpha = 1 \equiv \text{pure CP-even}$

• Many discriminating variables, usually require Higgs/top reconstruction... ... but we do that anyway



Is there anything beyond the Standard Model?

Additional aspects of the analysis

Last update[Peter Berta, Manuel Guth, Eftychia Tzovara]

Simplified template cross-section (STXS) Boosted single lepton channel • Selection in nutshell (details in backup) • Studying Higgs XS in various Higgs $p_{\rm T}$ bins Allows for example BSM studies 4 jets, 3 b-jets@85% Reconstructed Higgs (reclustered jet. • • Using reconstructed $p_{\rm T}^H$ from our Reco BDT, $p_{\rm T}$ >300 GeV, 2 b-sub-jets) divided in following bins: One hadronic top candidate 0-120.120-200.200-300.300-450.450+ GeV One leptonic top candidate • L+jets resolved results: • Improves sensitivity (extra $p_{\rm T}$ bin!): 1.00 0.08 k(tt+>1b)1.01 .06 μ #H 1450---

Filin Nechanský

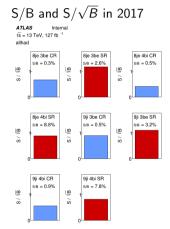
μ θ+ (200,300

μ ^(θ) (120,200

μ #H 10.120 1.00 0.61

1.00 0.71

1.00 0.71


1.00 0.41

All hadronic analysis (will be published separately) Last update [Giovanni Bartolini]

- Newest addition between ttHbb channels
- Takes advantage of b-jet triggers

Trigger chain	Luminosity		
	2016	2017	2018
HLT_2j35_bmv2c2060_split_2j35_L14J15.0ETA25	24.6 fb ⁻¹	-	-
HLT_2j15_gsc35_bmv2c1060_split_3j15_gsc35_boffperf_split	-	43.7 fb^{-1}	-
HLT_2j35_bmv2c1060_split_2j35_L14J15.0ETA25	-	-	58.5 fb^{-1}

- Large jet multiplicities! Regions with 6,7,8 and 9+ jets
- Significant background from QCD multijet backgrounds
- Used new class. BDT
- Statistical sensitivity comparable to dilepton

