The O(a?) initial state QED corrections to ete — y*Z* at
very high luminosity colliders

Johannes Bliimlein
DESY
[ In collaboration with A. De Freitas', C.G. Raab?, K. Schonwald*?]

IDESY, 2U. Linz, SKIT

DESY Colloquium, 4+5 February 2020
based on:

J. Bliimlein, A. De Freitas, C. Raab and K. Schonwald, Phys.Lett. B791 (2019) 206-209
J. Blimlein, A. De Freitas, C. Raab and K. Schonwald, Phys.Lett. B801 (2020) 135196 and in preparation.



Content

Introduction

v

v

Initial State Radiation in e* e~ Annihilation

» The History: 1987-2020
» The Method of Massive Operator Matrix Elements
» The Full Diagrammatic Calculation

» Phenomenological Results

Conclusions and Outlook

v

2/44



Introduction

e+

f'+

Cross-section (pb)

102

10

e'e"—hadrons

| CESR B
DORIS 1
PEP
PETRA — !
KEKB TRISTAN SLC ]
PEP-IT -
] 1 I 1 ]l_JEPII I 1 LIIZP I|I L E
0 20 40 60 80 100 120 140 160 180 200 220

Centre-of-mass energy (GeV)

» These corrections are important for the prediction of the Z-boson peak and
for t T production at LEP, ILC and FCC-ee, and at Higgs factories through

ete™ = Z* H.

» We revisit the initial state corrections to et e annihilation to a (virtual)
neutral vector boson, since only one comprehensive calculation existed:
Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))



Theory of Initial State Radiation

We look at the process:

e + et = /2 = 4+ fF J

with the invariants

(p-+pi) =s, p> =pi =m;, (prtp)=q=s

/

The initial state radiation (ISR) of n particles can be described by:

do )y (=8 j—me
ds' ~ 4s vE =gl =g J

where 0°(s’) describes the leading order process et e™ — f f and H (e, z, p)

radiator functions described by the Drell-Yan process with massive initial states,

p=m:/s,

H(ozzp)-&l—z)—i—Z( ) thlln (s/m3)



The

History

Numerous calculations at O(«) are in agreement, since about the time of
PETRA and PEP.

First higher order universal [leading log] results are calculated using
QED-factorization.

The accuracy reached at LEP requires the O(a?) corrections

1987: First O(Oé2) calculation Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988))

1990: O(a?) QCD corrections to the massless Drell-Yan process
Hamberg, van Neerven, Matsuura, (Nucl.Phys. B359 (1991))

[Contains processes yet missing in Berends et al. (1987) and accounts for s
correctly]

~ 1996: A first attempt to perform the O(a?) corrections using massive
OMEs; Mertig, van Neerven, Scharf; led to tarcer. Calculation did not converge.

W.L. van Neerven: "I will get into all
this, after they have gotten fermion-
number conservation.”



2002: A new start: JB, De Freitas, van Neerven.

At this time modern integration technologies for massive 2- and higher loop
calculations, also in the inclusive case, did not yet exist. We just had
harmonic sums and harmonic polylogarithms Vermaseren 1998, JB and Kurth 1998,
Vermaseren and Remiddi 1999.

We integrated in a rather baroque and lengthy way, applying a lot of tricks. In
a way it was painful, but we wanted to get the result.

2007: Willy worked on the project until one hour before he died and we still
had exchanged e-mails. The work has been done shared at Leiden, Caracas
and Zeuthen, e-mail and phone assisted.

2008: We finished the calculation, but disagreed with Berends et al. in all the
non logarithmic terms at O(a?); this also applied to Knichl, Krawczyk, Kiihn,
Stuart, Phys. Lett. B209 (1988)

We tried to clarify these differences for 3 years, without success.

2011: JB, De Freitas, van Neerven, Nucl.Phys. B855 (2012)
Does the massive Drell-Yan process not factorize from 2—loop onward?
(There has been a proof of factorization by J. Collins.)

> June 2018: After having a lot of experience in massive 2- and 3-Loop
calculations in QCD, we decided to perform the QED O(a2) corrections
without any approximation to finally decide, which result is correct.
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The Born Cross Section

The Born Cross Section : eTe™ — f,f f#e

do©(s) o? 4my

g T eyt
4 2

+24/1— %cosﬁGg(s)

<1+cos 6+ 47 gin 0) Gi(s) — 2 Gy(s)

2 2 2
O'(O)(s) = 47;? NCyf 1-— % [(1 =+ %) G1($) — 6% GQ(S):|
Gi(s) = Q@7 +2QeQrvevrRelxz(s)] + (v2 + a2)(vF + a7)|xz(s)]?
Gos) = (v +ad)alxz(s)’
Gi(s) = 2Q.QracarRe[xz(s)] + 4vevracar|xz(s)|.

(s)= — >
X2 = S TME 1 Mg,



The O(«) Corrections

» The first radiative corrections come from the process
et +e /7" + 4.
» To stay in d = 4, we can split the contributions into hard, soft and virtual
photons.

» The hard part is characterized by demanding

» The soft and virtual parts of the cross section have to be made infrared finite
by introducing a small photon mass .
» The cross section is then given by

doW! 4o o
ds' s <7
> The result is given by

),/ ©
d", _do g[5(1—z)(—2+§L+2@+2(L—1)|n( ))
ds s 2

1O(1—z— )11+22(L71)+o(’"?§)}

) [5(1 —2) (5151(,\, ) + 5}/1(,\)) +O1—z— )51”1(2)} .

T

—Z

with L = In(s/m?).



The Differences between Two Calculations

ISR corrections have been finally calculated up to O(a?) in the asymptotic
limit mZ/s < 1 with two different techniques:
1. Berends, Burgers, van Neerven (Nucl. Phys. B297 (1988)):

> Full calculation with massive electrons in the limit m? < s calculation in d = 4
with soft-hard separation, including soft and virtual photons, hard
bremsstrahlung, as well as fermion pair production.

> Calculational Technique:

o Direct integration over the phase space in d = 4 with soft-hard photon
separator and photon mass to regulate the infrared.

o Expansion in m? < s on integrand level (no details given).
2. JB, De Freitas, van Neerven (Nucl. Phys. B855 (2012))
> Direct calculation of the asymptotic limit m? < s using massive light-cone
operator matrix elements.
> The technique is based on asymptotic factorization.
Buza, Matiounine, Smith, Migneron, van Neerven (Nucl.Phys. B472 (1996))

> It was already used in Berends et al., but only for the logarithmically
enhanced terms, claiming it works only at that level.
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The Differences to Kniehl et al.: The NS Case

Kniehl, Krawczyk, Kiihn, Stuart, Phys. Lett. B209 (1988):

Use as input: Baier et al. (1966):

(This is a massless amplitude, except the final state.)
d’c

ds’ds"’

_ \y1/2 o o2y (& 2
= oo(s)W(s,5',s")P(s" ml) (%)

< s N (S/ +s//)2 +52 [S _ Sl _ s// + )\1/2(5751’511):”
)\1/2(57 S’, SH)(S _ s — s//) s—gs/ — sl — )\1/2(57 S,/ 5”)
Berends et al. (1987) picked this expression up in their 1988 Erratum and
agreed.
However, keeping m. everywhere, lead to our 2011 result.
This Epiphany has finally brought us on the right track:
No neglection of m. in all integrands!
The result by Kniehl et al. (1988), however, fully applies for ISR radiated pairs
like ut ™, 7777 and heavy quarks.
Keeping me finite everywhere will lead to monstrous expressions at
intermediary steps.
A calculation based on this has been impossible to anybody back in 1987,
given the available computing resources and the lack of mathematical
methods, known only since very recently, for a rigorous treatment.

v

vy

v

v
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Factorization in the Asymptotic Region:
The Method of Massive Operator Matrix Elements

We first consider the Method of massive OMEs.
In the asymptotic region the cross section factorizes

dO',"(l / ,LL2
ﬁ— Zr//(7 )®Cf/k< ' @ Mkj 27;5

into
. ~ ’
o massless cross sections & (z7 e
Hamberg, van Neerven, Matsuura (Nucl. Phys. B 359 (1991))
Harlander, Kilgore (Phys. Rev. Lett. 88 (2002))

. . 2 .
0 massive operator matrix elements ['j; (z, £5 ), which carry all mass dependence
e

JB, De Freitas, van Neerven (Nucl.Phys. B855 (2012))
9(s") is the Born cross section and the convolution ® is given by

f(z)®g(z) = /d21/d22 f(z1)g(2)0(z — z122).
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Factorization in the Asymptotic Region

The comparison between both calculations shows:

> the one-loop, i.e. O(«), agrees between both calculations

> the logarithmically enhanced terms at two-loops (O(a?)) agree between both
calculations

> the constant terms do not agree

= breakdown of asymptotic factorization or errors?



Factorization in the Asymptotic Region

p
—e, SN AR YT (AN
AAp)Nt '

F++:F77:eONS’Se N N -

ere eve (el SF le)s OF:S/‘liu,/w = iN71S [y, Dy, - - - Dy ] — traces,
re+’y = re*'y = <’Y| OF |’Y>7 s 2'N_2S E D D Fo

Vipg,eouy = 2! [ nwiaDuy oo Dy y ] — traces

r'yeJr = r'ye* = (e] OSV le), oot Hw

> The technique has been used to derive deep-inelastic scattering (DIS)
structure functions in the asymptotic limit Q° > m?® up to O(a3).

> In the context of DIS proven to work at a2 in the

o non-singlet process
Buza, Matiounine, Smith, van Neerven (Nucl.Phys. B485 (1997) )
Bliimlein, Falcioni, De Freitas (Nucl.Phys. B910 (2016) )

o pure-singlet process
Bliimlein, De Freitas, Raab, Schénwald (Nucl.Phys. B945 (2019) )
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The Renormalization Group Technique

We represent the observable in Mellin space transforming z = s'/s €[0, 1] :

The differential scattering cross section ¥(z) = doj(z)/ds’ is considered. This
quantity reads in Mellin space

1
M[Z(2)](N) = / dzz" 'y (z) .
0
In this representation the different Mellin convolutions to be performed in

z—space simplify to ordinary products. The following representation is obtained

do

”(N)—low)(/\/)Zr- N Y s (S Ty (v, 2
ds’ s ~— P m2 ) O\ 2 )T\ 2 )

» Here I';; denote massive operator matrix elements and & the massless Wilson
coefficients, both being calculated in the MS scheme.

>  is the factorization scale, which cancels in the physical cross section.

» The initial state fermion mass dependence is solely encoded in ['j;.
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The Renormalization Group Technique

The solutions of these equations are

u
lee N7 a, Y =
m

1
2 {2 A0 o

+1+ {7722) - ﬁo&gg) - 722) ee

a0+ 19 + 0@
-3 )] + o)

_|
2
>
/N
=
o
3%
N~~~
Il

2
1
e <N,a,%> = [ 2 a0] vo.

with the logarithms L = In “—z and A =In (%
m w

1
1+a[—2 ()L+r()] {{ vee)(v

0 0 2
260) + vingg} L

Iy FLB} + 03,

1 1 1
Z A0 ~(0) 2 0) (0 (0) ,,(0)
' [ 27 A ] ’ [{2%& (2 + o) + ”ev”e}A

},\+ ] +0(a%),

)
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The Renormalization Group Technique

Introducing the splitting functions in N-space

1
PO(N) = /0 dzz" P (2) = = (N)

one obtains
d";;e - 10(0)(5){1 + a0 [PSE)L + ( 59 4210 )]
+ag{ PO PO - BP0 4 PO 5 PO L2
+|PY+ PR ® (&22) + 2F£2’) — 605D+ PR 059 + TR e PO (L
+ (2r§? + 5% ) +2r0 250 +260 @r® + 19 orf }}
with

L=1n (i) =In (%) +in(z); L=In(s/m?) .
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The Renormalization Group Technique

It is convenient to represent the differential scattering cross section in terms of three
contributions, the flavor non-singlet terms with a single fermion line (1), those with a
closed fermion line (I1), and the pure-singlet terms (Ill). These contributions are :

do!
ete— _ 0) (0) (0) (0)
e = 201w L4 (0 4 2r)]
+a {2P£2) ® P(O)L2 + Pgi)’l + ng) ® < (0) + 2r(0)):|
. (2r(e? o) rarRosl i ot )
9% _ 1) pO12 | | pOuI _ 5 20 CARTCIR
= ( ) L° 4 | Pee _ﬂOUee (2ree + Oece )
ds’
111
do’e*e* — 10(0)(5)35 (0) ® P(O)LZ + Pgi)!IH + P(O) ® Ug’y) + r(o) ® P(O)
ds’ s 4
" (2|_(e£)‘,111 + 50 III) Py (0) ® I_(0)}
° &fjk) denotes the respective contribution of the massless Drell-Yan (DY)

cross section.
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The Renormalization Group Technique

Different ingredients to the calculation :

e Splitting functions P; to O(c?)

E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B 129 (1977) 66 [Erratum-ibid. B 139 (1978) 545];
Nucl. Phys. B 152 (1979) 493;

A. Gonzalez-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B 153 (1979) 161;

A. Gonzalez-Arroyo and C. Lopez, Nucl. Phys. B 166 (1980) 429;

E.G. Floratos, C. Kounnas and R. Lacaze, Nucl. Phys. B 192 (1981) 417;

G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B 175 (1980) 27;

W. Furmanski and R. Petronzio, Phys. Lett. B 97 (1980) 437;

R. Hamberg and W.L. van Neerven, Nucl. Phys. B 379 (1992) 143;

R.K. Ellis and W. Vogelsang, arXiv:hep-ph/9602356;

S. Moch and J.A.M. Vermaseren, Nucl. Phys. B 573 (2000) 853;

J. Ablinger et al., Nucl. Phys. B 882 (2014) 263; Nucl. Phys. B 886 (2014) 733; Nucl. Phys. B 890 (2014) 48;
Nucl. Phys. B 922 (2017) 1.

o massless Drell-Yan Cross Section &; to O(a?)

R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B 359 (1991) 343 [E: B 644 (2002) 403];
R.V. Harlander and W.B. Kilgore, Phys. Rev. Lett. 88 (2002) 201801.

e massive OMEs I'; to O(a?) = JB et al. 2011
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The 1-Loop OMEs

The O(£°) terms are

FrO(x) = —8Di(x)— 4Do(x) + 45(1 — x) +2(1 + x) [2In(L — x) + 1]
- _4{1141);2 {|n(1—><)+%H+

) = o

O = 20 g 1y

The linear term in e T (x) reads

TW(x) = —4Dy(x)—4Di(x) — GDo(x) — (4 + %@) 5(1 - x)
s2014+) i (1= x) + (1= 0) + S

- {11“ {I (1—x)+In(l—x)+ QH

Puls) = (In (1—x))+

+

1—x
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The Calculation of the Two-Loop Operator Matrix Elements

33 D
>
5
DD

(1) ar (18) (20)

Two-loop diagrams contributing to the massive operator matrix element
Ace(N, ).
The antisymmetric diagrams count twice.
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Result: Processes | + IV

The result for the the matrix element ﬁ;” is

143x2 N 122 32
{ [6(2 In(x) — 8In(x)Lig(1 — x) — 4In“(x)In(1 — x)} + (Tx +22 + 17) $o + (8 — 112¢p) Dy (x)
1 x — X

X2

+16 [2Li3(—x) — In(x)Lip(—x)] +

1—x 31

0

) +56(1 + x)¢p In(1 — x) + (16 — 52¢p + 128¢3) Dp(x)
— X

22 64 51 16
+ | —x+32+ -— =

3 3(1 — x)2 1—x  301—x)3

) 1n2(x) — (92 + 20x) In2(1 — x) + 14(x — 2) In(1 — x) + 120Dy (x)

178 64 140 48 1 3 x2 —8x—6
F— —36x+ —— — ———— — —— ) In(x) = @+ x) I3 (x) + 4————— In(x) In(1 — x)
3 3(1 — x)2 31—x) 1+x 3 1—x
141752 5 12 3 14 x 62
2T ) In?(1—x) — (14 x)In3(1 — x) + 32 [In(x) In(1 + x) + Lip(—x)] — 22x — —
1—x 3 1—x 3
13x2 + 9 5 — 11x2 4(16x2 — 10x — 27)
—4 Sy (1 —x)+4 [In(1 — x)Lip(1 — x) — Lig(l — x) — 2¢3] + ————————— Lip(1 — x)
—x 1—x 3(1 — x)

(452 1 7ax
+ 2 g0+ {4—33 _ Ty (3—7 - 48In(2)) G+ 58(3} 51— x)} 4 (=" {w
3 8 45 2 3(1 + x)2

2(9 + 12x + 302 — 20x3 — 15x%) 4(x2 + 10x — 3)
+ In(x) +

g T (¢a + 2Lig(—x) + 21In(x) In(1 + x))

142 2 4 N 5
+ [36(3 — 24¢5 In(1 + x) + 8¢5 In(x) — 3 In”(x) 4+ 40Lig(—x) — 4In“(x) In(1 + x) — 241In(x) In“(1 + x)
1+ x

—241In(x)Lip(—x) — 48In(1 + x)Lip(—x) — 8In(x)Liz(1 — x) — 1657 5(1 — x) — 4851’2(7)()}

ip(1 — x) +4x

16(x* + 12x3 4 12x2 + 8x + 3) 1—x—52 453 20
— L —— In“(x
3(1 + x)3 (1+x)3

21 /44



Result: Process Il

@ ®
The result for (2" is
co 76 _E_( 4 8 ) 128 80 64
e = g B3t i) )"0t s i Y a0 s
32 1 5 2 16 )
> - | 2a In(1 — x) + In%(1 —
5 (o~ o * ) P 30 (0 4 - )

2
_23((11+ x )) In?(x) + (%4 - 7@) Do(x) + %(1 +X)C — 3; (D1(x) + Da(x))

1 1411 501
( G+ 0(2—?> (1—-x)



Result: Process Il

@ b

The result for ng )T s
. 2 1
PO = 21— x)(4x® 4 13x + 4)Co + 3—(8)(3 + 135x% + 75x + 32) In*(x)
X X
4 2 2 4(1+2 24
ﬂ_@z 3X+103_ 3 _M In(x——xz
9x 9 3 14+ x 3(1+x)3 27
Liz(l — X) —+ 2Liz(—X)]

(x +4x + 1) [2In(x) In(1 + x) —

+16
14 3 .
+(1+ x) | 4¢2 In(x) + — In®(x) — 32In(x)Liz(—x) — 16 In(x)Li2(x) + 64Li3(—x)
182 X+ 50 32 800 64
1+x  27x  3(1+x)?

+32Lis(x) + 16¢3

The first moment vanishes for all three contributions (1! F-IL gng (1)
23 /44

— Fermion number conservation is satisfied



The Scattering Cross Section

The 2—-loop corrections to the process e” e~ — Z° can be organized in the
following form :

dogre— 1 5 A N
% = SU(O)(S){l + ao [Tnl- IF TIO] Lo [7_22|-2 + Tl + T20:|}
e Universal Corrections :  Tj(z) — depend on LO splitting functions
and o
2
T = 8Dy(z)—4(1+2)+65(1—2z)=4 [itzz} 7
n
T = {64171(2) + 48Do(2) + (18 — 32¢2)0(1 — 2)

3 In(z)
1

—, 32(1+2z)In(l — z) +24(1 + z) In(z) — 8(5 + z)}
I

+§{8Do(z) —4(1+2z)+66(1 — z)}

11

L 1 11 3
+16{5(1 IR U T S )}111
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The Cross Section at O(«) and the Logarithmic 2-Loop Contributions

o O(a) Term : Tio(2) = depend on LO OME + LO DY
2
Tiw = —4 [1 +z ] +2(46 — 1)6(1 — z)
1—z ],

Tul+ T = PR@)[L-1]+204¢ - 151 -2).

Complete 1-Loop Result.

e O(c?L) Terms : Ty (2) = depend on LO,NLO splitting fcts., LO
OME + LO DY
Contributions to the three main processes I-1ll :
1 45 11
Tn = 16{—8D1(Z) — (7 — 4C2)D0(2) + (—E + 7(2 + 3(3) 5(1 — Z)
142 > 11
+ < T ) {In(z) In(1—2z)—1In"(z) + i In(z)}

H(1+72) [4 In(1—z) + % In?(z) — % In(z) — 242] Cin(z) 3+ 42}
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The Cross Section at O(«) and the Logarithmic 2-Loop Contributions

17

Eé(l —z)

4 10
T o= 16{D1(Z)—9Do(z)—

I N
5

—
N

—
[y

~ 21422 2) ()] - § + 1;2}

1

T = 16{(1 +2) [2Li2(1 —2) —In%(2) + 2In(z) In(1 — z)]
< —|—1—z—%z2>|n(l—z)—(§§+1—§z—%zz)ln(z)

Up to this point, we find agreement with Berends et al. (1988), but disagree
for Tzo.
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The O(a?) Corrections by Direct Calculation

> In Berends et al. the O(a?) corrections have been split up into four distinct

processes:
o , photon radiation
o , non-singlet fermion pair production
o , pure-singlet fermion pair production
o , interference between non-singlet and pure-singlet fermion pair
production

> In the calculation of Bliimlein et al. (Nucl. Phys. B855 (2012) ) process | and
had to be treated combined due to the nature of the OMEs, which avoids
cutting techniques.

> We have to distinguish between vector and axial/couplings of the Z-boson.
— We throroughly work in d = 4 dimensions.

» We have to recalculate and to add contributions due to diagrams not having
been considered before.
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Recalculation

» We want to use iterated integrals so we can work in a differential field.

X 1

o () = [ i (0 Mg om0, Pl (9 = [l g (6) Hn, 1 (0.

0 X

> The steps to transform the last integrand to iterated integrals include:

o Express all logarithms and polylogarithms in terms of iterated integrals
evaluated at the last integration variable through linear differential equations.

o Find relations between the occurring letters and square roots to get rid of
redundancies.

o Compactify the integrand expressed in terms of iterated integrals as far as
possible.
— Since we express everything in linearly independent quantities, the
complexity of the last integral can be drastically reduced in this step.

» The same technique has been successfully applied to calculate the full mass
dependence of the pure-singlet structure functions in deep-inelastic-scattering.

> In total we need to express the contributions due to fermion pair
production.
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) — 1672 ((2(1 — 2)% — 8p(1 + 2)t + 4tz + 16p%)
1

—8p(1 4 2)t + 4tz + 16p) \/12(1 — 2)? — 8pt(1 + 2) + 16p?
t

Spt(1+ 2) + 1607

Sp(1+ 2)t + 4tz + 16p%) \/12(1
1

JT=H(t2(1 — 2)2 — 8p(1 + 2)t + 4tz + 16p2) /(1

Spt(1+2) + 169
t

- VI=1(12(1 — 2)2 = 8p(1 + 2)t + 4tz + 16p2) /(1
1

Spt(1+2) + 169

V(=1 + 2)2 = 162 \/2(1 — 2)? = 8pi(1 + 2) + 16p%
1

ViV = 2)2 — 1692 (12(1 — 2)% — 8p(1 + 2)t + 4tz + 16p%)
1

—16p2(12(1 — 2)2 — 8p(1 + 2)t + 4tz + 16p%) /(1 — 2)° — 8p(1 + )1 + 16
i
i

V1 —2)2 = 16p2(2(1 —

8p(1+ 2)t + 4tz + 16p?) \/2(1 — 2)° — Spt(1 + 2) + 169

Spt(1 + 2) + 1602

t
VI— /(1 -2 —Spt(1 + 2) + 167
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1
&=
R N T S T s
i
&=
T VT /167 St )it (L2
1
d=
I 0/162 s+ ot (1— 22
1
=
4T (1607 + (42 — 8p(1 + 2))t + (1 — 2)22) VI — 13/160% — 8p(1 + 2)t + (1 — 2)°2
t
ds =
(1602 + (4= — 8p(1 + 2))t + (1 — 2)22) VT — 1,/160% — 8p(1 + 2)t + (1 — )22
1
dom
-0V — 2 — 1692
1
Ay =
T 0t —2) — )il — 27 — 1697
. 1
oy =
N TP - 2R St + 2) 1 1672
’ Vi
oo =
SN Ty e T T —Spt(1 + 2) + 1697
1
o =
T VT E(2(1 = 2)2 — 8p(1 + =)t + Az + 1697) /(1 — 2)7 — 8pl(1 + 2) + 165
t
doy =
T T H (21— 2)7 — 8p(1 + 2)t + 4tz + 1672) /(L — 2)% — 8pi(1 + 2) + 167
1
o =
T T+ 2 — 16p2/2(1 — 2)7 — Spi(1 + 2) + 1607
1
dyp = - - —
VEJHL = 2)? — 1602 (£2(1 — 2)° — 8p(1 + 2)t + 4tz + 169) /(1 — 2 — 8p(1 + 2)i + 1672
’ Vi
oy =
T A= 2 — 162 (21— 2)? — 8p(1 + 2)t + 4tz + 16p2) /(L — 27 — 8pi(L + 2) + 162
1
dy = —
tV1T —t/t2(1 — 2)2 — 8pt(1 + z) + 16p>
t
dys =

/T—1y/P(1 = 2)% — 8pt(1 + =) + 16p%

p=m:/s, z=s5s'/s, t- integration variable.

of these letters
introduce elliptic
structures, since
multiple square roots
cannot be rationalized
at once.



The Size of the Calculation

Size of amplitudes:

Computation time:

process |

process |l
process 1l
process |V

process | 10Gbh
process |l 25kb
process 11 56kb

process IV 124kb

Reduction Integration
to Basis

30h

1 day min's

1 month 2h
2 months 5h

several months
of code design



The Non-Singlet Case

do@ (5. o 64 - 256 -
e e P A | L
1282(1 —4p?) (1 — 2+ 2p)(1 — 2 — 4/1)H
31— 2)? dods
5122p(1 — 4p*)(1 — 2+ 2p)(1 — z — 4p) ~
+ Haga,
3(1-2)°

2[1+z (4= 92+ 42%) +2(9 — 162 + 13 — 2:%)p + 32| L,

512” [3 L= z)tz— (1= 2% (44 2%)p — 2(9 — 292 + 3827 — 172 + 32%)
)(3 462 — 52%) P+ 16(7 — 82 + 922)p* + 128(3 — z)p"‘] o,

[ 34z 412027 — 21225 4 1202 — 342° + 325 1 8(2 — 162 + 922

420 = 524 2:%)p + 162(12 - 132 + 1822 — 27 + 32(1+ 222 = 72%) |

1282
—9(1 7) [1+77—-L7z +862° — 4724 + 720 +z"—2(7—554+54z
+162° — 172* + 32° )p—
; - 6
F16(8 — 232 + 2222 4 92%) g + 128(7 + 22 — 22) 4} flyy — 5 (22 + (L= 2)p)flyy
16 = 321 —4p) (1 —z+2p)(1 — 2 —4p) ~

— (14 2—4p)H, H,
+{3 T s = Ao, + et .
“l 1—z—dp—T—dpy/(1—2)2 = 8(1 + 2)p + 16p?

n
1—z—dp+T—dpy/(1—2)2 = 8(1 + 2)p + 1602

Complete cross section without any approximation. Note the new iterated
integrals, which are found using Risch-algorithm techniques.

4(39 — 16z + 1627 + 42° 4 52) p*
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The Non-Singlet Case

» The explicit expansion of the analytical result in the limit m2 < s gives

de@il(z) _ oO(s") <g)2 {s 1+ 22 2 [E 11-12z4+ 1122 161+ 22 In(2)
ds’ s 47 31—z 9 1-z 31—z
% lltz: In(1 — z)} L+ ﬁ“ — 13z 4822 — 132% + 77)
. % (3 — 362 + 9422 — 727° + 1974) In(z) — 3(;3727:) In(z)

with L = In(m2/s).
» The result contains higher denominator powers which have not been obtained
by Berends et al.

128
="y

1 2

3+ - 2—22}—16 1+

l-z¢ (-2

4 1
_9(12)3+9(12)2}|n(z)+31—z
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Process |

2 photon emission:

» T52:  both emitted photons are soft ,/
» T,2:  both photons are virtual \/
> 7-281V1: one photon is soft, one is virtual /

» T,'M1: one photon is soft, one is hard /

» T,)*M1: one photon is virtual, one is hard: disagreement

» T)'2:  both emitted photons are hard, /

Here and in the following we only report the vector-case.

There are differences in the axial-vector case (not clear from Berends et al.)
Since we can work in 4-dimensions (only Abelian couplings) we can treat s
without a further finite renormalization.

» We find the difference:

100

= —ZIn"\Z) — n —Z — Z)In —2—8(2
5 = —8+33 In?(z) —8In(1 — z) +4(1 — z) In?(1 — 2)

;Z)th(z)

1—-=z
8(2—2 2

G )

2
1—z ’
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Process Ill: Pure Singlet

5, _ 160 32 128 4 et 521 64
III*T*?‘FW*E‘F (+Z)C3* (7Z)+372(
— 533(1 +2)In%(z) + {24(1 —2)+16(1 + 2) In(z):| ¢ 4 In(2) [% - %

256 64 veal1 +17z3 In1 1+ 2)
- -z n z)| —
31+22 14z 3z

1— 23)] In?(z)

128

3(1+ z)3

4
40(1 — z) + 6f(1 - 7%
3z

+48(1+z2) In(z):| Lio(1 — z) + 64 [1 —z+ 3—12(1 —2)—(1+2) In(z)] Lio(—2)

+128(1 + z)Lizs(—z) — 96(1 + z)S1,2(1 — z) + 2<)mtcrf,
Y, 52
_ 48(2+22+2 )HL]HU

ds’' s

ol _ o) (antf (5
Dintest _ 7 15) (E) ~160(1 — 2) — {10(0 +42) — 80(1 + 2)H_
40(2 422 + 22 , 16 8(4— 6z +322
. [52z - ¥H,1]Hg -5+ {s(r —42)H, — %H@]H1

z

4(4 -6z 2 —2 4 — 6z + 322
—MIMK—{S(B*M) 8(8 z+5z)uufs( GZH )111}110,1
32(5 + 222 96(2 + 2z + 32(2 422 + 22

()z Z)Ho ( S Z)H 1}“0‘ 1*7( : Z)Ho,m

- [80(1 +2)+
_ .2 . 2 2
L 16(10-10:+32) 8(4— 62+ 32 )HW? 96(2+2:+2%)

0,0-1
z z

8(4— 62 + 322 48(2 4 22 + 22
( Z+ )Hl— (+Z” )H,l}(2+32(5+z)<3}

0,—1,—1

+ [8(10 + z) + 160H, —

m?
‘o (T)

== First calculated by A.N. Schellekens (Thesis, Nijmegen, 1981)
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Process IV: Non-Singlet Pure Singlet Interference

» We find the difference:

2(53 + 994z + 3222 4 74223 — 85z% — 825) 1— 14z — 5622 + 7823 — 2524
5IV = —8
9(1—2z)(1+2)? (1 - 22)2
1+ 22 8z(13 + 1222 — 2023 + 3z* ,
+ - In(z) &2 — 127 In“(z)
+16 1—z+722-323 74322 In(2)| Lia(1 — 2) + 32(1+527422)| (14 2)
n(z I —Z ————— In z
(1+2)2 2(1-2) 2 (1—2)2

16(4 — 7z — 622 — 1282% + 27* — 92%)
3(1 —z)%2(1+z)3

32(1+ 5z — 42%)
(1—2)?

:| In(z) + Lip(—2z),

= OUI' results agree with the ones obtained in JB, De Freitas, van Neerven,
2011.
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Numerical Illustrations
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> Relative deviation of the photon (1), non-singlet (II), pure-singlet (I11) and their
interference (1V) contribution in %.
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Numerical Illustration

5000
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z(1-z) C2
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-2000 :
10-5 1074 0.001 0.010 0.100

> lllustration of the Wilson coefficients for the photonic (1), non-singlet (1),
pure-singlet (lIl), interference x10 (1V) and neglected contributions x 100 multiplied
with the factor z(1 — z). The black line represents the whole contribution to initial
state radiation.
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O(a?) QED Initial-State-Radiation — Phenomenology

The Z-Peak

25

2.0

o [fb]

0.5

86 88 92

90
\/: [GeV]

blue: Born
green: O(av)
red: O(aZ)

black: O(a?)
+ soft exponentiation

» The mass and width of the Z-boson are
measured very precisely:
AMz = £2.3MeV, Al; = +2.1MeV (PDG)

> O(a?) corrections and soft exponentiation have

sizable impact on peak position and width.

> The differences we found can affect the width

of the peak within the accuracy of the

experiments.

Fixed width |s dep. width

Peak |Width | Peak | Width

(MeV)|(MeV)|(MeV|(MeV)
O(a) correction 210 603| 210/ 602
0O(a?) correction -109| -187| -109| -187
0(a?): ~ only -110|  -215| -110| -215
0O(a?) correction
+ soft exp. 17 23 17 23
Difference to O(a?) [1] 4 4

O(34MeV) shift between fixed and s-dep. width in peak position

Berends et al., Bardin et al., Beenakker & Hollik.
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O(a?) QED Initial-State-Radiation — Phenomenology

(%]

100

Z°H® Production
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50 x soft resum.

250 300 350 400 450 500 550 600

Vs [Gev]

> Initial-state-radiation has a big effect on the shape of the threshold.

> The O(az) corrections are of the size of the anticipated accuracy; the sequence of corrections

converges relatively quickly.

» Soft-photon resummation is less important than in other processes.
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O(a?) QED Initial-State-Radiation — Phenomenology

tt Production at Threshold

0 [pb]

\/;(GeV)

> Initial-state-radiation has a big effect on the shape of the threshold.

» Soft-photon resummation leads to a sizable effect.

> The O(a?) corrections are of the size of the anticipated accuracy.
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Conclusions

We calculated the O(a?) massive operator matrix elements in QED, which
contribute to the 2-loop initial state corrections for ete™ — Z*/+* in the
limit m?/s — 0 using the renormalization group method for the
electron-contributions.

We have obtained all logarithmic contributions O((aL)?), O(a?L), O(aL) and
the constant contributions O(«) correctly.

The literal application of the s > m? expansion, as proposed by BBN seemed
for nearly one decade not to deliver the result obtained by conventional
integration. However, we found by a full calculation that the O(a?) results of
BBN are not correct.

On the other hand, we obtained our results for the 2-loop matrix elements by
two independent methods, which agree on the results. Furthermore, the
complete OMEs obey Fermion number conservation, and renormalize as
expected. The 2-loop anomalous dimensions are correctly obtained.

In the case of massless external lines, massive OMEs can be calculated without
any problem and the results agree in all cases investigated with that obtained
in the limit m?/p> — 0. This now also applies for massive external states.



Conclusions

> There are contributions to the O(a?) corrections with vanishing OME, which
also appear in the massless Drell-Yan process. They have to be included
(missing at BBN).

» Due to the axial-vector couplings of the Z-boson the corrections in the vector-
and axial-vector case are not the same (as already known from the Drell-Yan
process). We have accounted for these contributions as well.

» The differences at O(a?) are large, reaching the order of the logarithmic terms
in part of the kinematic region.

» We have performed phenomenological studies for key-processes at present and
future ete™ colliders. Cutting at s’ > 4m? leads to a difference of 4 MeV for
I, scanning the Z° peak, at a present accuracy of 2.3 MeV

» The newly obtained corrections are of relevance at high luminosity ete™
facilities planned for the future.



