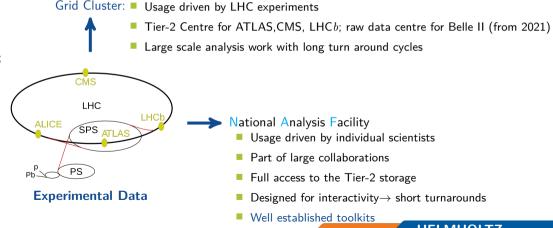

FACILITY TOPIC

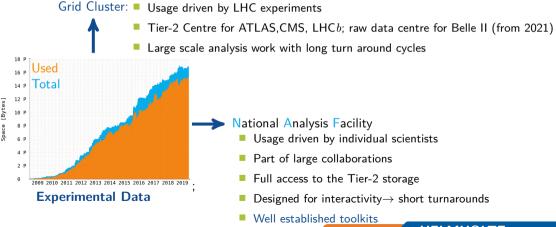
IDAF M&T LK II Facility@DESY Christian Voß

GSI Helmholtzzentrum für Schwerionenforschung GmbH

ROSSENDORE



Data Driven Sciences – LHC Experiments


- $lue{}$ Science in Matter is largely data driven ightarrow need facilities to analyse the data
- lacktriangle Existing Facility: MU Tier-2 Centre ightarrow one of the largest sites within WLCG

Data Driven Sciences – LHC Experiments

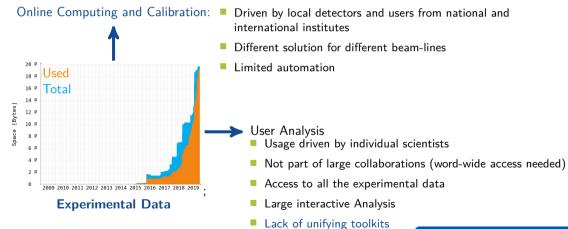
- lacksquare Science in Matter is largely data driven o need facilities to analyse the data
- lacktriangle Existing Facility: MU Tier-2 Centre ightarrow one of the largest sites within WLCG

Data Driven Sciences - Photon Science Experiments

Experimental Data

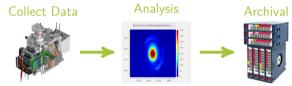
Dedicated High Performance Computing infrastructure

Online Computing and Calibration: Driven by local detectors and users from national and international institutes Different solution for different beam-lines Limited automation User Analysis Usage driven by individual scientists Not part of large collaborations (word-wide access needed) Access to all the experimental data

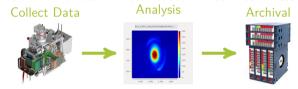

Large interactive Analysis

Lack of unifying toolkits

Data Driven Sciences - Photon Science Experiments



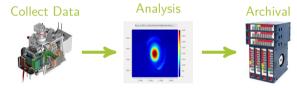
Dedicated High Performance Computing infrastructure



- lacktriangle Requirements from MML experiments reach scale of LHC ightarrow necessity to improve on existing methods and ideas
- lacksquare Better detectors deliver more data ightarrow data reduction becomes an issue

- lacktriangle Requirements from MML experiments reach scale of LHC ightarrow necessity to improve on existing methods and ideas
- lacksquare Better detectors deliver more data ightarrow data reduction becomes an issue

- New accelerators and detectors developed within MT become ever more complex
- Simulating these new generations requires more and more resources
- lacktriangle These produce large amounts of sensor data themselves ightarrow increasing demand for resources


- Requirements from MML experiments reach scale of LHC → necessity to improve on existing methods and ideas
- lacksquare Better detectors deliver more data ightarrow data reduction becomes an issue

- New accelerators and detectors developed within MT become ever more complex
- Simulating these new generations requires more and more resources
- lacktriangle These produce large amounts of sensor data themselves ightarrow increasing demand for resources
- lacktriangledown HL-LHC requires restructuring of computing throughout WLCG ightarrow Exascale Computing

- lacktriangle Requirements from MML experiments reach scale of LHC ightarrow necessity to improve on existing methods and ideas
- lacksquare Better detectors deliver more data ightarrow data reduction becomes an issue

- New accelerators and detectors developed within MT become ever more complex
- Simulating these new generations requires more and more resources
- lacktriangle These produce large amounts of sensor data themselves ightarrow increasing demand for resources
- HL-LHC requires restructuring of computing throughout WLCG → Exascale Computing Strong incentive for interdisciplinary collaboration across Matter

From Tier-2 and HPC Cluster to the IDAF

Establishment of the Interdisciplinary Data Analysis Facility

- Artificial separation determined by community not by requirements
 - (Astro-)Particle Physics community (MU) present on Grid&NAF systems
 - Machine and Photon Science (MT and MML) present on HPC system
- Assign resources through requirements
- HPC resources for Machine Learning (GPUs) easily accessible for all scientists
- Non-HPC applications from MML access to the NAF to free up HPC resources
- Matter as an interdisciplinary program suggests creation of an interdisciplinary facility
- Shared infrastructure leads to shared knowledge
 - Experience through Machine Learning seminars
 - Scientists use similar tools on same GPU hardware

Objectives for the IDAF

Integrating Different Communities into a Single Infrastructure

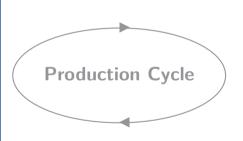
- Simply opening up resources for all communities not sufficient
 - Access to classic compute resources can feel clunky
 - Moving from Grid&NAF ← HPC requires learning of different submission tools
 - Data access requires a certain technical expertise
- Infrastructure itself needs changes
 - →close collaboration with MT-DMA and all other topics in *Matter*

Objectives for the IDAF

Integrating Different Communities into a Single Infrastructure

- Simply opening up resources for all communities not sufficient
 - Access to classic compute resources can feel clunky
 - Moving from Grid&NAF ← HPC requires learning of different submission tools
 - Data access requires a certain technical expertise
- Infrastructure itself needs changes →close collaboration with MT-DMA and all other topics in Matter

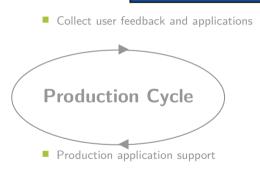
Objectives to support all scientists within Matter across the IDAF


- Support efficient access with maximum flexibility to compute and storage resources
- Workflows and Tool need to be invariant when scientists switch infrastructure
- Access to data transparant and simplified
- Minimally invasive to well established workflows

Overlapping Expertise between LK I and LK II activities especially MT-DMA

Expert Scientists and MT-DMA

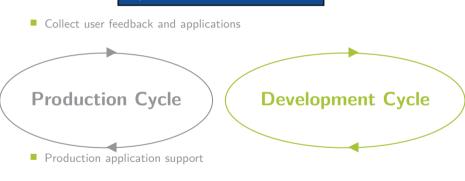
User Communities (from all *Matter* fields



Overlapping Expertise between LK I and LK II activities especially MT-DMA

Expert Scientists and MT-DMA

User Communities (from all *Matter* fields)



Overlapping Expertise between LK I and LK II activities especially MT-DMA

Expert Scientists and MT-DMA

User Communities (from all *Matter* fields)

Emerging Technologies (internal/external impulses

Overlapping Expertise between LK I and LK II activities especially MT-DMA

Emerging Technologies (internal/external impulses)

Overlapping Expertise between LK I and LK II activities especially MT-DMA

Expert Scientists and MT-DMA

Production Cycle

Production application support

Identify key emerging technologies

Refine prototypes into pilots

Development Cycle

Prototype on dedicated resources

Pilot on production resources

Interdisciplinary Data and Analysis Facility

Emerging Technologies (internal/external impulses)

Overlapping Expertise between LK I and LK II activities especially MT-DMA

Expert Scientists and MT-DMA

Communities Matter User

Collect user feedback and applications

Improve systems with user feedback

- Identify key emerging technologies
- Refine prototypes into pilots

Production Cycle

Development Cycle

- Production application support
- Adapt into production

- Prototype on dedicated resources
- Pilot on production resources

Interdisciplinary Data and Analysis Facility

(internal/external impulses) **Emerging** Technologies

Competences

For Establishing the Interdisciplinary Data Analysis Facility

- Existing Infrastructure supports already user groups across all fields of *Matter*
- Tier-2 centre major contributor among all WLCG sites with regard to CPU and storage
- HPC cluster handles the online computing for PETRA-III/FLASH and EuXFEL
- HPC cluster supporting Photon Science Users at PETRA-III/FLASH and EuXFEL

Competences

For Establishing the Interdisciplinary Data Analysis Facility

- Existing Infrastructure supports already user groups across all fields of *Matter*
- Tier-2 centre major contributor among all WLCG sites with regard to CPU and storage
- HPC cluster handles the online computing for PETRA-III/FLASH and EuXFEL
- HPC cluster supporting Photon Science Users at PETRA-III/FLASH and EuXFEL

Most Members of *Matter* are active on the existing infrastructure

Some examples: Anton Barty (CFEL), Frank Gaede (DESY FH Division/FLC), Yves Kemp (MT-DMA ST-1 Spokesperson, DESY IT Devision), Jens Osterhoff (MT-ARD Spokesperson), Christian Voß (IDAF Spokesperson, DESY IT Devision), Tim Wilksen (MT-DMA ST-3 Speaker, DESY M Division)

Conclusions

on the Interdisciplinary Data Analysis Facility

- Existing infrastructure delivers resources to allow scientist to harvest data for excellent scientific results
- Existing infrastructure is a valid starting point
- The program Matter benefits from a overarching shared computing infrastructure
- Exploit close connection to scientists in Matter
- Even deeper connection with the new topic MT-DMA