

Topic

Detector Technologies and Systems Marc Weber and Silvia Masciocchi

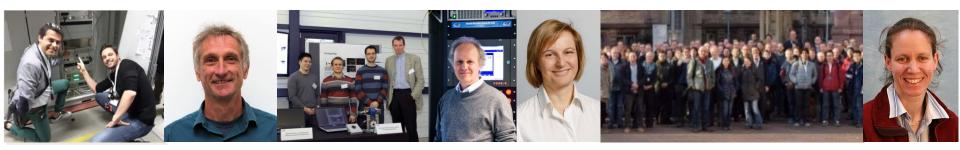
GSI Helmholtzzentrum für Schwerionenforschung GmbH

HI JENA HELMHOLTZ Helmholtz Institute Jena

HELMHOLTZ

ZENTRUM DRESDEN ROSSENDORF

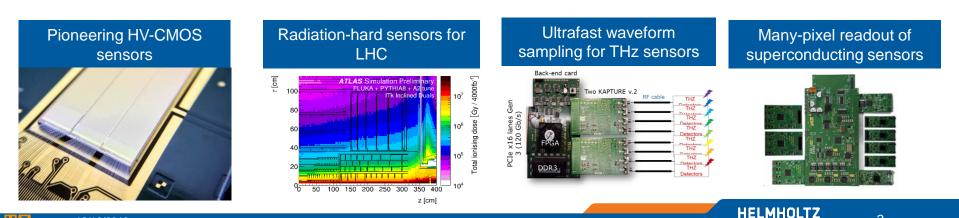
a


Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

www.helmholtz.de

DTS excels in detector technologies

WHO WE ARE

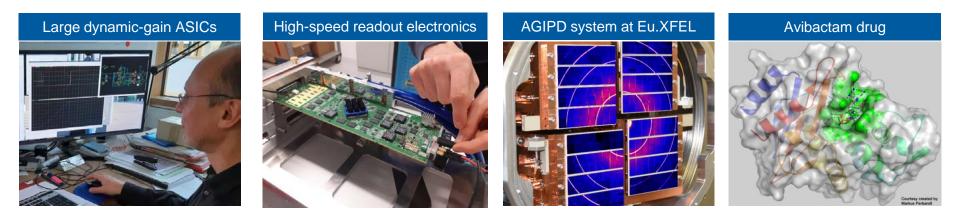

- Diverse and interdisciplinary team of staff physicists, engineers, and technicians
- Many PhD students
- Numerous collaborators
- Significant third-party funding
- Core-funded scientists: 54 FTE (2021)
- Core-financed costs: 12.5 MEUR (2021)

2

DTS is delivering innovative systems

WHO WE ARE

- We are world-experts in many cutting-edge detector instrumentation technologies
- MT-DTS is a leader in systems development
- MT-DTS has a strong record in conceiving, designing, and delivering key instruments
- A key asset is our proximity to the users and science applications in MU and MML



3

World-class instrumentation for science

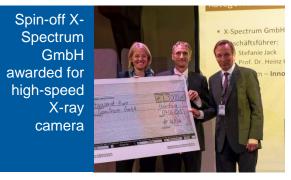
WHO WE ARE

- DTS played a leading role in developing AGIPD and DSSC pixel detectors
- 3 systems delivered to Eu.XFEL, more systems in development
- Used for pioneering science, e.g. studying antibiotic resistance mechanisms in bacteria

Reaching out to community, industry and society

WHO WE ARE

 We provide service to the community


DTS hosts TWEPP conference

Organizing Heraeus seminars

12/18/2019

 Technology transfer is part of our mission

A DTS team at a clinical study for 3D ultrasound breast cancer diagnosis

 DTS fosters public understanding of science

Town hall lectures...

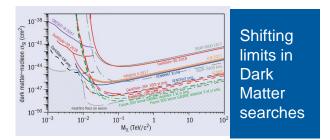
... or science slam

Pushing the limits of detector physics

MISSION & STRATEGY

Mission

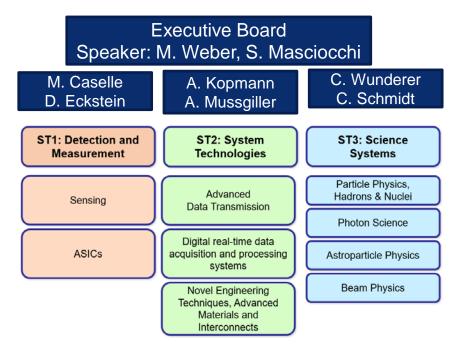
Conceiving and developing cutting-edge detector technologies and systems


- to keep "Matter" at the forefront of scientific discovery,
- to exploit the scientific potential of our facilities,
- and to open entirely new research directions in "Matter"

Strategy

Focusing on key challenges and areas with opportunities for revolutionary changes and maximum impact

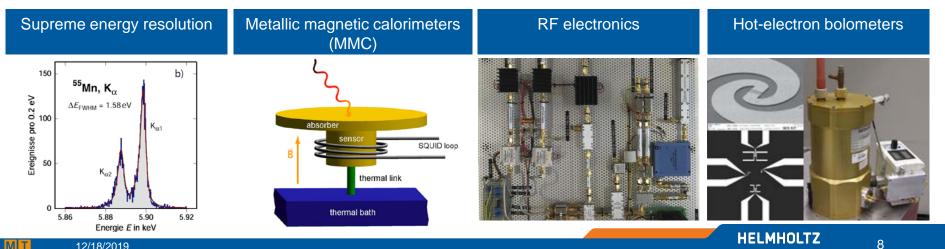
- to realize the physical limits of space, time and energy resolution in detector systems
- to cope with the data deluge



Enabling excellent science through unique detectors

TOPIC STRUCTURE

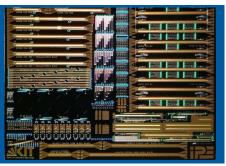
MT


- Subtopics directly reflect strategy:
 - realizing the physical limits resolution in detector systems
 - coping with the data deluge
- DTS demonstrator projects form an effective link across Matter
- Organizational structure is light-weight but effective

ST1 highlight: high-resolution superconducting sensors

SCIENTIFIC FOCUS

- Pushing cryogenic superconducting sensors requires high-tech infrastructure
- We hope to establish unique competences in Europe
- Substantial addition to technology portfolio of Matter
- Very strong support by community and world-leading associated partners

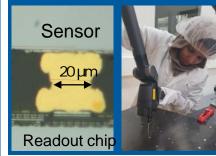

System technologies (ST2)

SCIENTIFIC FOCUS

We have identified technologies that are essential for future detector systems and where we are aiming for technological leadership

Silicon photonics

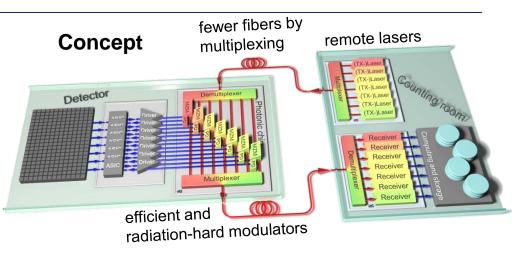
A game-changing technology enabling trigger-less detectors



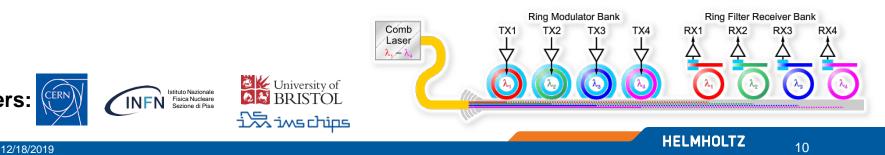
Real-time data acquisition Scaling-up to Terabit/s, advanced algorithms, detector intelligence

Cryogenic readout Enabling 1k-pixel cameras, superconducting electronics Spin-off: Quantum Computing

Novel engineering techniques High-density electronic integration, microfabrication



ST2: Realizing the potential of silicon photonics


SCIENTIFIC FOCUS

Partners:

- Pioneering silicon photonics for detector instrumentation
- Goal: record data transmission bandwidth of ~ 8 Tbit/s per fiber with wavelength division multiplexing
- Joint ST1 and ST2 milestone: Establish silicon photonics components for data transmission by 2025

Vision – compact optics by ring modulators

Science systems (ST3)

SCIENTIFIC FOCUS

Enabling 4D detector systems with unprecedented time, energy, and position resolution

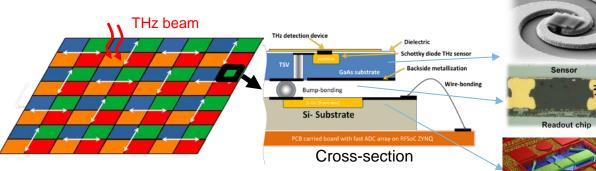
High-energy physics Ultra-low material silicon detectors with excellent time and spatial resolution

Photon science Megapixel detector for soft X-rays, high-Z detectors, MHz- frame rates

Astroparticle physics Cryogenic detectors of unique energy resolution for dark matter searches and neutrino physics

12/18/2019

Beam physics Multi-spectral THz detectors for beam diagnostics



ST3: TeraHErtz pixelated SpecTRAL detector (THESTRAL)

SCIENTIFIC FOCUS

12/18/2019

Large-area pixelated THz detectors - combining spatial, spectral, timing and polarization measurement

- Custom pixelated roomtemperature or cryogenic THz sensors (ST1)
- High-density gold stud bumpbonding technology (ST2)

Front-end ASICs developed in SiGe BiCMOS technology (ST1)

- Applications: THz imaging; medical, pharmaceutical, material science; spectroscopy; THz wireless communications
- Milestone: Readout ASIC in SiGe technology by 2024
- Milestone: THz detector system by 2025

Continuous data acquisition up to 500 Mfps, data rates of ~400 Gb/s (ST2)

Teaming up with leading institutions

COOPERATION

in Helmholtz:

- Collaboration between the centers in DTS is traditionally strong
- Many DTS staff members work part-time on experiments or projects within MU and MML
- Close collaboration with ARD (especially in beam diagnostics)
- Innovation pool projects with DMA scientists

World-wide:

- Close collaboration with excellent German universities
 - Humboldt-Universität zu Berlin
 - Universität Hamburg
 - Universität Heidelberg
- Numerous cooperations with leading international institutions in our field

Unique facilities for cutting-edge detectors assemblies

INFRASTRUCTURES

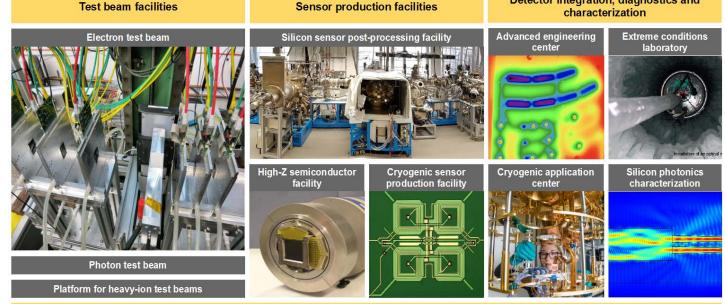
Cutting-edge infrastructures operated by professional and permanent staff are a distinct asset of MT-DTS

Electronic interconnect and packaging centers

Test beam facilities

Heavy-ion microbeam

Micro- and radiowave characterization labs


Detector assembly lab

Helmholtz Distributed Detector Lab (DDL)

INFRASTRUCTURES

- Huge leap forward for Matter high-tech infrastructure
- Purpose: conceive, design, produce and characterize sensors of unprecedented resolution and efficiency
 Detector integration, diagnostics and

DTS – the international hub for detector technology

VISION 2027

- Establishing and operating world-wide unique laboratory infrastructure
- Pioneering ground-breaking technologies:
 - pixelated cryogenic sensors for Dark Matter searches, metrology, ...
 - silicon photonics for detector readout
 - hybrid sensor design for optimized performance
- Pushing limits in data rate by orders of magnitude

- Delivering critical contributions to Helmholtz facilities: PETRA 4, CW-XFEL, ...
- Actively scouting and identifying emerging technologies for the next decade
- Training young scientists, technology experts and future leaders for academia and the high-tech industry

