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Conclusions
Generative Models are powerful techniques

Object of an intense R&D , require careful validation

Many applications in High Energy Physics

Simulation is one of the  main applications

High level of accuracy & speed

Multiple features/capabilities

Deep Learning is a driving force toward changing our computing model

DL workloads are HPC friendly

Benefit from dedicated hardware and accelerators
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Some background

Theories on biological learning
First linear models
Layer-wise pre-training through greedy algorithms

Back-propagation

PERCEPTRON
Neural Networks

Decision Trees
Random Forests
BDT

SVM
Modern 
Deep 
Learning

Deep 
Learning at 
the LHC

~Now

NN @LEP BDT 
@SLAC

Image from  “Deep Learning”, I. GoodFellow, MIT press book
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Deep Learning in HEP
DL recognize patterns in large complicated data sets

Better performances if applied directly to raw data
Re-cast physics problems as “DL problems”

Detector output as images and apply computer vision techniques
Physics events as sentences and apply NLP techniques

Intense R&D activity
Performance requirements

Model interpretability
Results Validation against classical methods
Detailed Systematics studies

“New” computing models
Accelerators and dedicated hardware
HPC integration
Cloud environment & Big Data platforms

B. Hooberman et al. 
(NIPS 2017)
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Generative Models

Some references:
• NIPS 2016 Tutorial on Generative 

Adversarial Networks, I. 
Goodfellow

• 2018 Generative Models tutorial,  
D. Rezende

• 2019 Stanford course on Deep 
Generative Models

Basic concepts

“GM Taxonomy” Image from NIPS 2016 Tutorial, I. Goodfellow



6

GM as Density Estimators

Given a collection of samples xi and the 
underlying pdata distribution 
Choose parameters {θ} so that p{θ}(x) ≈ pdata

Generative models learn probability distributions from data 

{xi} , pdata

Neural 
Network

P{θ}(x) New samples

x
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Prior knowledge?
Generative models use *some* prior knowledge 

DATA PRIOR KNOWLEDGE

Generative Models Geant4

Extract meaningful representations 
directly from data but need:

Loss functions
Learning principle
Optimisation algorithms
Domain knowledge

D. Rezende: https://danilorezende.com/2018/07/12/short-notes-on-divergence-measures/

Probability divergence D(p,q)
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Multiple Applications
Event sampling (Simulation)
Find Underlying Factors (Discovery)
Detect Rare events (Anomaly Detection)
Predict future events (Planning)
Find Analogies (Transfer Learning & Style Transfer)

Shen H, 2017 (Preprint 1711.09919)

Denoising: LIGO waveforms

Anomalies: 
CMS BSM trigger

O. Cerri, ACAT2019, arXiv:1811.10276 

Style transfer: 
Pierre Auger Observatory

arXiv:1802.03325
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(Deep) Generative Models
Internal representations learned by shallow systems are simple (Bengio & LeCun 2007, Bengio 2009)

Incapable of learning complex hidden structures
Large amounts of labeled data

à Deep Generative Models
à Higher levels of abstraction 
à Improved generalisation and transfer

à Categorized according to
à Feature representation

à Fully observed, or latent variables based

à Learning principles 
à MLE, variational, or likelihood-free
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Fully Observed Models

Ex. Pixel Recurrent Neural Networks:  

Directly observe data without introducing new local (latent) variables

https://arxiv.org/pdf/1601.06759.pdf
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Latent Variables models

Introduce an unobserved random variable for every
observed data point to explain features. 
Prescribed models: Use observer likelihoods and
assume observation noise.
Implicit models: Likelihood-free models.

Unsupervised representation learning
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Variational AutoEncoders

Explicit constraints on the encoded 
representations

Learn the latent variable 
distribution

Two components in the loss function
reconstruction loss 
KL divergence between the learned 
latent distribution and the prior 
regularization

Describe training dataset in latent space

https://arxiv.org/abs/1312.6114 

Model 
parameters

Variational
parameters
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Likelihood-free learning

Compare the estimated distribution q(x) to the true distribution p*(x) using 
samples.
Build an auxiliary model to indicate how data simulated from the generative 
model differs from observed data.
Adjust model parameters to better match the data distribution

Density estimation by comparison

https://arxiv.org/pdf/1406.2661.pdf
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Adversarial training
Assume a deterministic generator:

A  prior over latent space:

Define a discriminator:

A learnable loss function from the min-max game

Wasserstein loss
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Generator G generates data from random noise
Discriminator D learns how to distinguish real data from 
generated data

15

Simultaneously train two networks that compete and cooperate 
with each other

Generative adversarial networks
arXiv:1406.2661v1	

Image source:

https://arxiv.org/pdf/1701.00160v1.pdf
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Multiple GAN flavors
Different base layers technologies:

Original GAN was based on MLP in 2014
Deep Convolutional GAN in 2015
Graph GAN
Recurrent -GAN

Different “information paths”
Conditional GAN 

Extended to learn a parameterized generator pmodel(x|θ) 
Useful to obtain a single generator object for all θ configurations
Interpolate between distribution

Auxiliary Classifier GAN
D can assign a class to the image

Progressive growing GAN 
VAE-GAN
Stack GAN
BiGAN 16arXiv:1610.0958

arXiv: 1411.1784
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https://thispersondoesnotexist.com/



18

GAN for Art?

https://github.com/phillipi/pix2pix

Image-to-Image Translation with Conditional Adversarial Networks

http://www.memo.tv/portfolio/learning-to-see/
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Evaluating performance is tricky
Different applications

Density estimation
Sampling/generation
Latent representation learning
Custom task (i.e. image translation, compressions..)

Tractable likelihood models
Split dataset into train, validation, test sets
Evaluate gradients on train set
Tune hyperparameters on validation set
Evaluate generalization by reporting likelihoods on test set

Non-tractable likelihood or likelihood-free models
Use lower bounds or approximations (I,e ELBO, KDE)

https://deepgenerativemodels.github.io/syllabus.html
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GAN for simulation
Measure convergence

Evaluate difference between  model PDF and real PDF

At convergence evaluate sample quality 
Mixing and coverage (diversity)
Saliency
Mode collapse or mode dropping
Overfitting 

Need quantities that are invariant to small translation, rotation, intensity  
changes 

Simple pixel space Euclidean distances don’t work
Define a way to map input into a feature space

Inception score
Maximum Mean Discrepancy 
Fréchet Inception Distance
Structural Similarity Index 

+ Physics Quantities Validation
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Generated support space

GANs produce distributions with limited support
Support size grows ~linearly with discriminator size

Training dataset size does not help much for a given 
discriminator

Example:  BiGAN
support size is around 1M (training set ~200k)

Size of the dataset

Search for nearest neighbor

*Zhang	A.,	ICML’17

Birthday paradox test*
If  a sample of size s has near-duplicate images with prob > 1/2, then 
distribution has only s2 distinct images.

Birthday Paradox: Suppose a distribution is supported on N images. 
Then P[sample of size  √N  has a duplicate image]  > ½.
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One extreme case: Mode collapse
Goal is to  generate fake examples imitating real sample
Simple solution is to just generate easy modes (classes).

22Luke	Metz,	Ben	Poole,	David	Pfau,	and	Jascha Sohl-Dickstein.	Unrolled	generative	adversarial	networks	(2016).
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Duality Gap

For a given set of Dicriminator and Generator: 

A natural metric in minimax games

Fix generator, find most 
adversarial discriminator

Fix discriminator, find most 
adversarial generator

P. Grnarova, NeurIPS 2019

Mode Collapse detection
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Generative Models are powerful techniques

Object of an intense R&D , require careful validation

Many applications in High Energy Physics

Simulation is one of the main applications

High level of accuracy & speed

Multiple features/capabilities

Deep Learning is a driving force toward changing our computing model

DL workloads are HPC friendly

Benefit from dedicated hardware and accelerators

Conclusions
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3DGAN

https://openlab.cern/project/fast-simulation
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Compact LInear Collider
High-luminosity linear e+e- collider
Three energy stages up to 3 TeV
Associated detector studies

Electromagnetic calorimeter detector 
design
1.5 m inner radius
5 mm×5 mm segmentation
25 tungsten absorber layers +  silicon 
sensors

http://cds.cern.ch/record/2254048#
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High Granularity Calorimeter

Geant4	
shower	

51

Pixelized datector volume to fully contain shower

1M single particle samples (e,γ,π) with flat energy spectrum (10-
500) GeV  

α=+/- 30° random incident angle

Detector	response as	3D	images	(51x51x25 pixels) 
Large	dynamic range,	Sparsity

Open data set developed for ML applications (1)

(1)	M.	Pierini et	al.	NIPS	2017
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Condition training on input variables, Custom losses 
Auxiliary regression tasks assigned to the discriminator

3D Generative Adversarial Networks

Generator:

Discriminator:
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Stable test loss
Discriminator Real/Fake 

probability peaks at ~50%
Correct incident angle

Convergence
and discriminator performance

G4
Entries  1621
Mean   0.5682
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Generated events

Geant4 GAN

Geant4 GAN
Geant4 GAN	

Ep=147	GeV,		α=	88°
Ep=189	GeV,	α=	63°

Ep=111	GeV,		α=115°

GAN	generated	electron	
shower
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Agreement to Geant4 down to 500 keV
Low energy features missing

Single cell energy
Sparsity
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Internal Correlations

Geant 4

Difference

GAN
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Energy shower shapes
α=90°α= 60° α= 120°
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● Transfer learning from 100-200 
GeV pre-trained network

● Double training dataset statistics, 3 
epochs training

Transfer learning: extending the 
energy range

Longitudinal	
shower width

2-500	GeV Improved correlation description!

Transverse	shower width

Discriminator
energy
regression

10%

Error on	sampling fraction
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Structural Similarity Index (SSIM) is used to assess 
image  similarity

Measure diversity in GAN generated images
Run Triforce on GAN/GEANT4 events

Trained on Geant4 data

Further Validation (I)

energy regressionelectron identification

SSIM
(scale)

SSIM
G4	vs	G4

SSIM
GAN	vs	GAN

1 0.94 0.95 

1e-2 0.21 0.25
1e-4 0.045 0.061

1e-6 0.045 0.051

Triforce,	Matt	Zhang,	
https://github.com/BucketOfFish/Triforce_CaloML
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Further validation (II)

Similar to Classification Accuracy Score idea(1)

Train Triforce with a mix of GAN (electrons) and 
Geant4 (pions) data
Validate performance on Geant4:

Obtain very good results (99% AUC)

Train TriForce classifier on GAN data

Some electrons are 
not classified correctly

(1)S. Ravuri, O. Vynials, NeurIPS 2019
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Computing
performance

Time	to	create	an	electron	shower

Method Machine Time/Shower
(msec)

Full	Simulation	
(geant4) Intel	Xeon	Platinum	

8180 17000

3d	GAN
(batch	size	128)

Intel	Xeon	Platinum	
8160	(TF	1.12) 0.8

20000x faster than Geant4 Convergence in 15min
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Other simulation examples at the 
LHC
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ATLAS LAr calorimeter 

Wasserstein GAN:	One	generator	against	two	critics

Ghosh,	CHEP	2019
ATL-SOFT-PUB-2018-001  

Complex	geometrical	structure

GAN		can	do
Interpolation!
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DijetGAN

Investigate regions of the 
phase spaces with low
cross-section à interesting 
kinematic region for BSM 
searches
GAN can produce 
”reasonable” output beyond 
the training data phase space!

QCD dijet events at the LHC

S.	Palazzo,	IML	WG	2019
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CMS HGCAL prototype

Wasserstein conditional GAN (convolutions)
Train a generator against a critic and  2 constrainer 
networks  reconstructing energy and impact point 
coordinates 
Good agreement to Geant4

Some problems at low energy

High Granularity and Hexagonal cells for CMS upgrade

arxiv.org:	1807.01954
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Other applications in HEP 
(simulation)

Generative models for ALICE TPC simulation (ACAT2019)

GAN in LHCb: calorimeter and RICH simulation (CHEP2019)

Graph-GAN for CMS HGCAL (ACAT2019)

Variational AutoEncoders to simulate ATLAS LAr calorimeter (CHEP19)

Wasserstein GANs to generate high-level physics variables based on Monte 
Carlo ttH (superfast-simulation) (IML WG 04/18)

Particle-GAN for Full Event Simulation at the LHC (ACAT2019) 
Refining Detector Simulation using Adversarial Networks (CHEP2019)

Model-Assisted GANs for the optimisation of simulation parameters  
(AISIS2019)
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Generative Models are powerful techniques

Object of an intense R&D , require careful validation

Many applications in High Energy Physics

Simulation is one of the  main applications

High level of accuracy & speed

Multiple features/capabilities

Deep Learning is a driving force toward changing our computing model

DL workloads are HPC friendly

Benefit from dedicated hardware and accelerators

Conclusions
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Addressing Computing challenges
Millions of operations 

Mostly matrix-multiplications

HEP models are designed and 
optimised for specific tasks

Generally custom models
~Fewer weights and operations than 
out-of-the-box tools
Higher accuracy

Depending on the task, we might 
need:

Fast inference
Online training capability
Fast training for large optimisations

44

Most	HEP	
models
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Accelerators
Deep Learning workloads are naturally accelerator friendly

Large number of frameworks and ecosystems to simplify deployments
Can work with half precision arithmetic (16FP, …)

GPUs are de-facto standard to run DL
R&D on reducing bottlenecks (memory size, I/O. …)

FPGAs can provide low latency inference
Network compression/quantization/parallelisation
Different programming approaches Hardware Description Language vs High Level 
Synthesis

Frameworks  exist that “compile” ML code for different hardware
Customisation

Available in cloud environments for on-demand access
Initial tests to time inference on cloud vs local

IBM POWER8 on Minsky
NVIDIA P100 GPU
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Intel PAC Arria 10 card; OpenVINO; DLA design suite
Implement missing components:

3D convolutions (done)
3D upsampling (inprogress)

Heterogeneous computing
FPGA-acceleration	of		3DGAN inference

46presented	at	CHEP2019

Throughput
CPU	+	FPGA

CPU	(1	core/1	thread)

CPU	(32	core/64	thread)

35.6	img/s

11.5	img/s

77	img/s

DLA	customization



47

• Data distribution
• Compute gradients on several batches 

independently
• Update the model synchronously or 

asynchronously 
• Applicable to large dataset

Data is sent and received from a single 
node
Can have high communication costs

Smart update strategies
Computation or bandwidth bottleneck

Distributing the training process
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HPC resources

Most powerful systems are hybrid
Ease access to the resources
Integration in HEP infrastructure

Software stack deployment ?
Containers
Most DL framework provide containerised versions

Workflow management ? 
Native DL platforms are natural choice (i.e. Kubeflow)
Adapt HTC job schedulers ?

Data access/management ?
S3 works very well
Supported widely in commercial clouds
Not all HPC centers allow access to it

HPC ”creates” new DL models

HTC

Efficient
Intra-node 
communication 
is key

Node 1 Node 2 Node 3

Node 1 Node 2 Node 3
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Intel	Endeavour cluster:	Xeon® 8268	Cascade	Lake,	2	Sockets	/node,	24	cores per	socket,	Intel®	Omni-Path	Architecture
Software: Tensorflow 1.14	(Intel	optimized),	MKL-DNN	0.18,	Horovod 0.16.4,	Keras 2.2.4

Distributed training 
on Cascade Lake
Training	3DGAN	can take days
Implements data	parallel approach using
Horovod.
128	Nodes:
Xeon	8160	(Sky Lake):	~2	Mins/Epoch
Xeon	8268	(Cascade	Lake): <	1	Min/Epoch
256	Nodes:	
Time	to	Convergence:	~15	Mins

2.8X	Improvement with
Xeon(R)	8268	&	optimization

presented	at	IXPUG
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Deploy 3DGAN training on SuperMuc-NG using 
CharlieCloud

Intel Xeon Platinum 8174 (Skylake)
48 cores
Intel® Omni-Path Architecture

Containerized deployment on 
HPC

Transition AI algorithms from laptops to supercomputers

5
0

4	MPI	rank	&	12	OpenMP threads	per	MPI	task

Presented	at	IEEE-HPEC
DOI: 10.1109/HPEC.2019.8916576

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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Cloud resources
A solution to consider for offline applications

Not always feasible/effective to buy 
specialized hardware
Most MLaaS solutions are not 
customizable enough for scientific use 
cases
Great opportunities for R&D with industry

New initiatives to increase access to 
commercial clouds
deploy hybrid models (OCRE in the 
context of the EOSC)

T-SystemsP100 
CSCS

Sp
ee

du
p

0

2

4

6

8

Number of workers
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P100 ( Exoscale - docker)
GTX-1080 (Local - kubeflow)
P100 (Exoscale -kubeflow)

3DGAN training on public cloud:
Docker + Kubernetes/Kubeflow
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Bonus Material

Refining Simulation using GANs : Ultra High Energy Cosmic Rays
Pushing the boundaries: Quantum GAN

52
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Pierre Auger Observatory

Refining Simulation using GANs

Detection of UHECR E>1017.5 eV
Hybrid Technique

27 Nitrogen Fluorescence (ultra-violet) 
telescopes
1660 Surface detectors (water tanks)

3000 km2 array size

Simulation/Data mistmatch
Refine simulation using WGAN
Train DNN on refined simulation

arXiv:1802.03325www.auger.org
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Refining Simulation using GANs

DNNs very sensitive to simulation / data mismatches
Simulation underestimates the muon component 
Generate 2 datasets “data-like” and “simulation-like
Run DNN regression on them 

à DNN does not fit the “data-like” events because it is trained on simulation

DNN	output
Simulation-like Data-like

DNN	output
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Refining Simulation using GANs

DNN	output,	
DNN	trained	
on	simulation

DNN	output,	
DNN	trained	
on	refined	
simulation
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Why Quantum Machine Learning? 

Quantum approach to ML could solve more complicated problems… faster 

ML based tool can recognize complicated (hidden) patterns in data 

Quantum processors can produce statistical patterns that are computationally 
difficult to produce with classical approaches

à Could quantum processors recognize more complicated patterns in 
data?

56

Defining what quantum speed-up means is a complicated task
Need to compare to the “best available” classical algorithm
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Quantum ML

QML introduces quantum algorithms as part of a larger implementation 
Fully quantum or hybrid classical/quantum approaches 
Input data could be quantistic à ML for QC

How do we construct Quantum Neural Networks (QNN) ? 
Direct association between neurons and qubits
Encode information into amplitudes of a quantum state

How do we represent learning rules? 
Need association rule between NN activation patterns and pure quantum states

How do we address data loading?
Quantum state preparation
Direct access through qRAM ?

Possible to train on large datasets by only loading a small number of samples!
57

... and ML for Quantum Computing
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Principle of Quantum Computing

Based on quantum mechanics → Encoding in Quantum Bits (= Qubit) 
Superposition of states ; 2n possible states |0⟩, |1⟩, …,|2𝑛−1⟩ for n qubit quantum system 

Able to manipulate computations in parallel 
Computation described in unitary quantum logic gates → Reversible  
Exponentially reduced in space and time

Circuit model

58
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Quantum GAN

Based on IBM QGAN implementation
Hybrid model : Quantum Generator + Classical Discriminator
Efficient in loading and learning a probability over discrete values

Increase resolution by adding qubit

59
https://doi.org/10.1038/s41534-019-0223-2
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A simplified 3DGAN
25x25x25 too big for initial test: reduce to 1D distribution

Focus on longitudinal energy profile

60

Binned into 2𝑛 = 𝑁 pixels → Map to 8 values expressed by 3-qubit generator 
Probability of getting state |𝑘⟩ = (Relative) Energy at pixel k
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Generator: 3 qubits, 3 layers
Classical Discriminator: 512 nodes + Leaky ReLU → 216 nodes + Leaky 
ReLU → single-node + sigmoid
AMSGRAD optimizer for both generator and discriminator

61

Reproducing longitudinal energy 
shape
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Preparation of the initial state
Progress in relative entropy for 3 qubits & depth 3

62

Quality of result 
depends on initial 
states

Uniform

Normal

Random
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Understanding performance

63

Kolmogrov-Smirnov Statistics : Measures equality between P(x) & Q(x)

→ With 95% confidence level & 1,000 samplings, null hypothesis is accepted if 𝐷EF ⩽ 0.0547
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Using more powerful discriminator (4 hidden layers)
Uniform initialization + depth 1
After 3,000 epochs, able to reproduce similar shape

First attempts at 2D (6 qubits)

64
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Conclusions… again
Generative Models are powerful techniques 

Fast simulation applications are reaching a high level of accuracy

Performance validation remains a key issue

Need to start designing common procedures 
Results validations

Integration 

Computing resources availability is a driving factor of the problem size we can solve 

Benefit from dedicated hardware and accelerators (GPUs, FPGAs, TPUs)

DL development is accelerated by a diversified community

Continuous R&D and collaboration with external partner is essential
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Thanks!
Questions?

https://openlab.cern
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CERN OPENLAB
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MANAGEMENT

JOINT R&D

EDUCATION

INNOVATION & 
KNOWLEDGE TRANSFER

COMMUNICATION

JOINT R&D

MANAGEMENT

INNOVATION &
KNOWLEDGE SHARING

EDUCATIONCOMMUNICATION

Driving Innovation since 2001

Evaluate and	test	state-of-
the-art	technologies	in	a
challenging environment.	
Improve them in	
collaboration	with industry

Communicate
results,	demostrate
impact,	and	
outreach.

Collaborate with other
communities.	Create
knowledge and	
innovation.

Train the	next generation of	
engineers/researchers,	
promote education and	
cultural	exchanges.

Sixth Phase
VI

2018
SET UP 
2001

I 
2003

II 
2006

III 
2009

IV 
2012

V
2015
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JOINT R&D PROJECTS

Data	
Acquisition	
(LHCb,	CMS,	
Dune,	IT-CF) Code	

modernizati
on	(EP-SFT,	
LHC	Exp.,	
OPL)

Cloud	infra	
(IT-CM)

Data	Storage	
(IT-ST,	IT-DB,	

EP-DT)

Networks	
(IT-CS)

Control	
Systems
(BE-ICS)

Data	
Analytics,	
Machine	
Learning	
(many)

High-bandwidth fabrics, 
accelerated platforms for 

data acquisition 

HPC, Cloud,
Quantum

Cloud technology, 
containers, scalability

Storage architectures, 
scalability, monitoring

Software Defined 
Networks, Security

Predictive/proactive 
maintenance and 

operations

Fast simulation, Data 
quality monitoring, 
anomaly detection, 

physics data reduction, 
benchmarking/scalability, 

systems biology and 
large-scale multi-

disciplinary platforms
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