DESY

Mikel Mendizabal

Table of contents

- 1. Master thesis: An exploratory analysis on broad Kaluza-Klein gluons
- 2. Antwerp internship: Nonperturbative effects in Drell-Yan transverse momentum spectra

gluons

Master thesis: An exploratory

analysis on broad Kaluza-Klein

Supervisors: Mariano Quirós & Rafel Escribano (IFAE theory group)

 \bullet Extra dimensional theory (5D) \to Randall-Sundrum solution to hierarchy problem

Supervisors: Mariano Quirós & Rafel Escribano (IFAE theory group)

ullet Extra dimensional theory (5D) o Randall-Sundrum solution to hierarchy problem

• All SM particles are represented in 5D

Supervisors: Mariano Quirós & Rafel Escribano (IFAE theory group)

- ullet Extra dimensional theory (5D) o Randall-Sundrum solution to hierarchy problem
- All SM particles are represented in 5D
- Kaluza-Klein decomposition: $\Psi(x^{\mu},y) \propto \frac{e^{A(y)}}{\sqrt{L}} \sum_n \psi_n(x^{\mu}) f_n(y)$

Supervisors: Mariano Quirós & Rafel Escribano (IFAE theory group)

- ullet Extra dimensional theory (5D) o Randall-Sundrum solution to hierarchy problem
- All SM particles are represented in 5D
- Kaluza-Klein decomposition: $\Psi(x^{\mu},y) \propto \frac{e^{A(y)}}{\sqrt{L}} \sum_n \psi_n(x^{\mu}) f_n(y)$

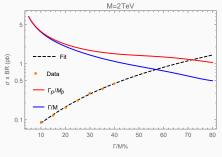
$$g_4 \propto rac{g_5}{N(L)} \int_0^L dy e^{A(y)} f_g^{(1)}(y) f_q^{(0)}(y) f_{ar{q}}^0(y) \sim g_5 g_0$$

Supervisors: Mariano Quirós & Rafel Escribano (IFAE theory group)

- \bullet Extra dimensional theory (5D) \to Randall-Sundrum solution to hierarchy problem
- All SM particles are represented in 5D
- Kaluza-Klein decomposition: $\Psi(x^{\mu},y) \propto \frac{e^{A(y)}}{\sqrt{L}} \sum_n \psi_n(x^{\mu}) f_n(y)$

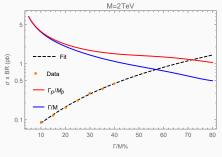
$$g_4 \propto rac{g_5}{N(L)} \int_0^L dy e^{A(y)} f_g^{(1)}(y) f_q^{(0)}(y) f_{\bar{q}}^0(y) \sim g_5 g_0$$

- Study of the coupling of the first mode of the gluon to the right handed top quark
- ullet One loop corrections to the mass of the gluon and the partonic CS of the qar q o tar t

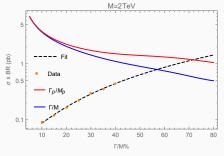

Precise results, pp collisions \rightarrow MadGraph:

Precise results, pp collisions \rightarrow MadGraph:

 $1. \ \mbox{Building an extension of the SM for our massive gluon}$

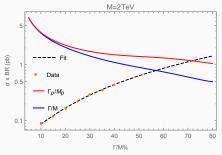

Precise results, pp collisions \rightarrow MadGraph:

- 1. Building an extension of the SM for our massive gluon
- 2. We computed the CS for $pp \to t \bar t$ for different masses and widths of the KK gluon


Precise results, pp collisions \rightarrow MadGraph:

- 1. Building an extension of the SM for our massive gluon
- 2. We computed the CS for $pp \to t \bar t$ for different masses and widths of the KK gluon

Precise results, pp collisions \rightarrow MadGraph:


- 1. Building an extension of the SM for our massive gluon
- 2. We computed the CS for $pp o t \bar t$ for different masses and widths of the KK gluon

3. Starting point for $pp \to t\bar{t}t\bar{t}$

Precise results, pp collisions \rightarrow MadGraph:

- 1. Building an extension of the SM for our massive gluon
- 2. We computed the CS for pp o t ar t for different masses and widths of the KK gluon

3. Starting point for $pp \to t\bar{t}t\bar{t}$

Interesting results!

Drell-Yan transverse momentum

spectra

Nonperturbative effects in

Supervisors: Francesco Hautmann & Ola Lelek (University of Antwerp)
Parton Branching (PB) approach:

Supervisors: Francesco Hautmann & Ola Lelek (University of Antwerp)
Parton Branching (PB) approach:

 Provides method to treat the evolution of transverse momentum dependent (TMD) parton distributions
 [see Hautmann, Jung, Lelek, Radescu and Zlebcik, JHEP 01 (2018) 070]

Supervisors: Francesco Hautmann & Ola Lelek (University of Antwerp)
Parton Branching (PB) approach:

- Provides method to treat the evolution of transverse momentum dependent (TMD) parton distributions
 [see Hautmann, Jung, Lelek, Radescu and Zlebcik, JHEP 01 (2018) 070]
- Relevant to include QCD resummation of multiple soft-gluon emissions as well as non-perturbative TMD effects

Supervisors: Francesco Hautmann & Ola Lelek (University of Antwerp)
Parton Branching (PB) approach:

- Provides method to treat the evolution of transverse momentum dependent (TMD) parton distributions
 [see Hautmann, Jung, Lelek, Radescu and Zlebcik, JHEP 01 (2018) 070]
- Relevant to include QCD resummation of multiple soft-gluon emissions as well as non-perturbative TMD effects

In my work I focused on non-perturbative aspects of the approach

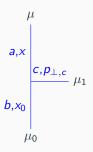
Angular ordering

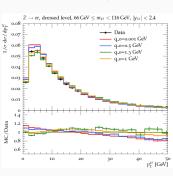
 The way we choose how to order the evolution in PB incorporates an important physical phenomena

Angular ordering: $\theta_{i+1} > \theta_i$

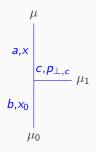
• Angular ordering enters in the evolution as

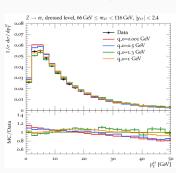
$$q_{\perp,c}^2 = (1-z)^2 \mu'^2$$
 $z_M = 1 - \left(\frac{q_0}{\mu'}\right)$ $\alpha_s((1-z)^2 {\mu'}^2)$


 The scale is proportional to the angle of the momentum of the radiated particle with respect to the particle beam


$$\frac{q_{\perp,i}}{1-z_i}=|k_{i-1}|\sin\theta_i=\mu'$$

· The first radiation is the one with the smallest angle


 q_0 : the minimum transverse momentum of the emitted parton


 q_0 : the minimum transverse momentum of the emitted parton

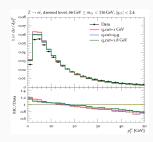
 q_0 : the minimum transverse momentum of the emitted parton

 $q_0 \sim 1$ GeV best choice

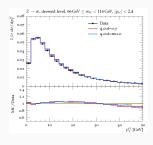
As we were working with angular ordering $ightarrow lpha_{\it s}({\it q}_{\perp})$

As we were working with angular ordering $ightarrow lpha_{s}(q_{\perp})$

For small values of q_{\perp} α_s diverges


$$lpha_{s}(q_{\perp})
ightarrow lpha_{s}(q_{\perp}>q_{cut})$$

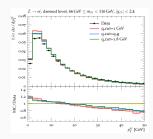
As we were working with angular ordering $ightarrow lpha_{s}(q_{\perp})$


For small values of q_{\perp} α_s diverges

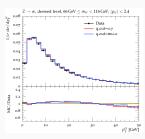
$$\alpha_s(q_\perp) \rightarrow \alpha_s(q_\perp > q_{cut})$$

For
$$q_0 = 0.1 \text{ GeV}$$

For $q_0 = 1 \text{ GeV}$



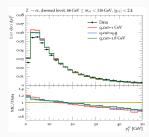
As we were working with angular ordering $ightarrow lpha_{s}(q_{\perp})$


For small values of q_{\perp} α_s diverges

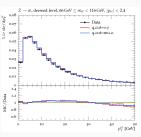
$$\alpha_s(q_\perp) \rightarrow \alpha_s(q_\perp > q_{cut})$$

For
$$q_0 = 0.1 \text{ GeV}$$

For $q_0=1$ GeV


For small q_0 larger cuts agree better with data

As we were working with angular ordering $ightarrow lpha_s(q_\perp)$


For small values of q_{\perp} α_s diverges

$$\alpha_s(q_\perp) \rightarrow \alpha_s(q_\perp > q_{cut})$$

For
$$q_0=0.1~{\rm GeV}$$

For $q_0 = 1 \text{ GeV}$

For small q_0 larger cuts agree better with data

For values of $q_0 \sim 1$ GeV the cut did not have effects

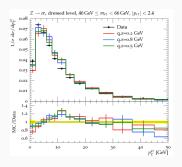
Non-perturbative effects: intrinsic k_t

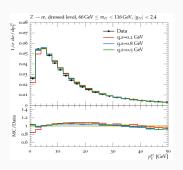
Intrinsic k_t : transverse momentum of the initial parton

Non-perturbative effects: intrinsic k_t

Intrinsic k_t : transverse momentum of the initial parton

The intrinsic k_t of the initial parton is generated from a gaussian distribution

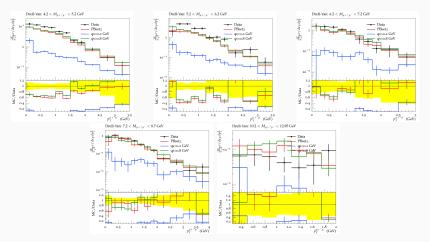

$$\sigma = \frac{q_s}{\sqrt{2}}$$


Non-perturbative effects: intrinsic k_t

Intrinsic k_t : transverse momentum of the initial parton

The intrinsic k_t of the initial parton is generated from a gaussian distribution

$$\sigma = \frac{q_s}{\sqrt{2}}$$



The width of the Gaussian of the k_t distribution affects the low p_T region and should be studied in detail in low energy experiments

ATLAS data is not sensitive enough at low $p_T \rightarrow \text{NuSea}$ experiment (Low mass DY

NuSea and intrinsic k_t

NuSea experiment is a fixed target low energy experiment performed at Fermilab where protons collide with deuterium and hydrogen

At low energy DY there is a big sensitivity to intrinsic k_t

Conclusions

- Study of non-perturbative parameters (q_0, q_{cut}, q_s) in PB method was performed
- ullet With $q_0 \sim 1$ GeV the best description of the Z boson p_t spectrum
- No need of introducing cuts for $q_0 \sim 1 \; {\rm GeV}$
- First application of PB method to low energy Drell-Yan processes (NuSea)
- ullet Significant sensitivity to intrinsic k_t was found in NuSea data