

QCD + EW FITSWITH XFITTER

XFITTER WORKSHOP, DESY-HAMBURG

Feb. 27th, 2020

SIMONE AMOROSO

PDFS TREATMENT IN EW MEASUREMENTS

- At the level of precision the LHC has achieved PDF uncertainties are dominating precision EW measurements
- Most of these measurements use some form of in-situ constraint of the PDFs
- PDFs profiling has been used in recent measurement to reduce PDFs uncertainties on EW parameters
- I will argue why PDF profiling will not be enough for the level of precision we need to achieve at the HL-LHC

W-MASS AND PDFS

* ATLAS W-mass measurement significantly affected by PDFs

- Large W polarisation uncertainty impacting p⁻¹ distribution
- BLUE combination of different categories reduced PDF uncertainties as W+ and W- are anti-correlated

W-boson charge	W	7+	W	7-	Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV] Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
Total	15.9	18.1	14.8	17.2	11.6	12.9

- Avoided an explicit PDF profiling including additional data
 - Issues with mixing constraints from unfolded (Z-rapidity) and reco-level (W p_T^I, m_T) distributions and impact of resummation corrections

ATLAS-TEVATRON W-MASS

- Ongoing efforts towards an ATLAS+Tevatron mw combination
- * Trying to move measurements to a common PDF set
- Several PDF sets will be quoted
- Which one should be taken as nominal?
- Started an xFitter
 benchmarking
 of modern PDFs
 against
 all Drell-Yan
 data in xFitter

Dataset	CJ15nlo	MMHT14	NNPDF31	CT18NNLO	ABMP16
ATLAS low mass Z rapidity 2011	26/6	18/6	14/6	12/6	21/6
ATLAS peak CC Z rapidity 2011	52/12	21/12	12 / 12	16 / 12	24/12
ATLAS peak CF Z rapidity 2011	16/9	11/9	11/9	10/9	9.2/9
ATLAS high mass CC Z rapidity 2011	7.7 / 6	6.1/6	5.8/6	5.9/6	6.1/6
ATLAS high mass CF Z rapidity 2011	4.6 / 6	5.5/6	4.7/6	4.8 / 6	4.5/6
ATLAS W- lepton rapidity 2011	17 / 11	8.4/11	8.7 / 11	9.1/11	10/11
ATLAS W+ lepton rapidity 2011	16/11	11/11	11 / 11	10/11	13/11
Correlated χ^2	118	50	31	40	50
Log penalty χ^2	-9.09	-3.32	-2.45	-3.66	-4.22
Total χ^2 / dof	247 / 61	127 / 61	95 / 61	104 / 61	134 / 61
χ^2 p-value	0.00	0.00	0.00	0.00	0.00

WEAK MIXING ANGLE

- PDF uncertainties constrained in A_{FB}, A₄ interpretation exploiting correlations in m^{II}, y^{II}
 - CMS Bayesian reweighing
 - ATLAS Hessian profiling
- Yet PDFs remain the largest source of uncertainty

 M_{\parallel} (GeV)

5

TOP MASS

- Mass dependence of predicted top-pair (differential) cross sections allows for indirect determinations of m_t
 - Reduced experimental uncertainties and less ambiguities on m_t, but large dependence on theory (scales + PDFs)
 - Typically use in-situ profiling of PDFs and QCD scales
- Still large uncertainties, but exp. precision will improve and NNLO theory is now available; PDFs will become the bottleneck

PDF PROFILING VS FITS

- PDF profiling/reweighting is not a replacement for a full fit
- * Profiling is only strictly valid in the vicinity of the χ^2 minimum; it will fail if the impact of the new data is too large
 - Cannot account for methodological changes, such as modification in the PDFs parametrisation or to the theory
- ***** Typically assume a $\Delta \chi^2 = 1$
 - The impact of the new data estimated with profiling will generally be different than including the same data in a new fit.
- The input PDF might have unknown correlations with the new data
 - e.g. CT18A includes ATLAS 7 TeV W-asymmetry which would statistically overlap with W-mass dataset

PDF+EW FITS

- A simultaneous fit of PDFs and determination of EW parameters would overcome the issues with profiling
 - Biases from the choice of theory, parametrisation, input data and statistical treatment can be evaluated and exposed
- And allow a simultaneous determination of multiple EW parameters, properly accounting for all correlations

A PDF+EW fit would also provide additional benefits:

- Can further reduce PDF uncertainties by including data providing additional constraints
- Provides a framework for combinations of measurements at different \sqrt{s} , from different experiments (LHCb, HERA, LHeC?)
- Evaluate consistency/compatibility of different measurements
- By explicitly considering only well understood/well predicted data, might hope for a statistically well-defined uncertainty (tolerance of 1)

HERA QCD+EW FITS

- Long tradition of PDF fits from HERA Collaborations
- These datasets are included in global PDFs, assuming EW parameters are SM-like. Standard PDFs cannot be used for EW parameter interpretations
- Full fit of PDF+EW parameters as the only way to determine EW parameters in an unbiased way
 - Performed at NNLO QCD + NLO EW (in the OS scheme)
 - Using the standard HERAPDF methodology and parametrisation
 - Several combinations of parameters are fitted

e.g. H1 EPJC(2018)78:777

Fit parameters	Result	Independent input parameters
m_W +PDF	$m_W = 80.520 \pm 0.070_{\text{stat}} \pm 0.055_{\text{syst}} \pm 0.073_{\text{PDF}} \text{ GeV}$	$\alpha, m_Z, m_t, m_H, m_f$
$m_W^{\rm prop}$ +PDF	$m_W^{\text{prop}} = 80.62 \pm 0.67_{\text{stat}} \pm 0.17_{\text{syst}} \pm 0.38_{\text{PDF}} \text{ GeV}$	$\alpha, m_W, m_Z, m_t, m_H, m_f$
$m_W^{(G_{\rm F},m_W)}$ +PDF	$m_W^{(G_{\rm F},m_W)} = 82.05 \pm 0.51_{\rm stat} \pm 0.44_{\rm syst} \pm 0.37_{\rm PDF} {\rm GeV}$	α , $G_{\rm F}$, m_t m_H , m_f
m_Z +PDF	$m_Z = 91.084 \pm 0.064_{\text{stat}} \pm 0.050_{\text{syst}} \pm 0.070_{\text{PDF}} \text{ GeV}$	α , m_W , m_t , m_H , m_f
m_t +PDF	$m_t = 154 \pm 10_{\text{stat}} \pm 12_{\text{syst}} \pm 15_{\text{PDF}} \pm 15_{m_W} \text{ GeV}$	$\alpha, m_W, m_Z, m_H, m_f$

AND INTERPRETATIONS

10

-σ

With PDF uncertainties under control many possible interpretations can be derived
1.1 F

determine PDF+ $\alpha_{\rm S}$, PDFs+m_b,m_c

1.05 0.95 0.9 -- SM <mark>=</mark> ρ'_{CC,f} **H1**: ρ' cç,eq CC,eq 20 30 100 200 √Q² [GeV] W-boson mass ALEPH ATLAS CDF D0 DELPHI L3 **OPAL** H1 **PDG** 2017 Н1 80.2 80.3 80.4 80.5 80.6 m_w [GeV]

PDF+EW FITS IN XFITTER

- * xFitter already established tool to perform PDF fits studies within the HERA and LHC communities
- Need to ensure a coherent treatment of QCD and EW theory corrections in the predictions used
 - Can a unified EW scheme be used for DIS and pp(ppbar)?
- Need to incorporate additional EW parameters obtained from dedicated predictions in the chi2
- The traditional HERAPDF parametrisation is likely too restrictive and would bias EW parameter extractions
- Using Minuit might also not be the best approach if trying to determine more than o(10) parameters

PARAMETRISATION

- With the amount of data the standard HERA based PDF parametrisation in xFitter becomes a bottleneck.
- I have recently started implementing a parametrisation based on Bernstein polynomials, following what is done in the CT fits
 - Each parameter peaks at a given x
 - Low-correlations among parameters
 - Better uncertainty estimates (a data point at high-x won't constrain low-x PDFs)
- Available in an xFitter branch, pending some more validation

DATASETS

exp.	obs	channel	\sqrt{s}	lumi	pts	ref	
CDF	$d\sigma/dy$	$Z \rightarrow ee$	1.8 TeV	108 pb^{-1}	28	hep-ex/0006025	
CDF	A_W	e u	1.96 TeV	1fb^{-1}	13	arXiv:0901.2169	
CDF	$d\sigma/dy$	ee	1.96 TeV	2.1 fb^{-1}	28	arXiv:0908.3914	
D0	$d\sigma/dy$	ee	1.96 TeV	0.4 fb^{-1}	28	hep-ex/0702025	
D0	A_W	μu	1.96 TeV	7.3 fb^{-1}	12	arXiv:1309.2591	
D0	A_W	e u	1.96 TeV	9.7 fb $^{-1}$	14	arXiv:1312.2895	
D0	A_l	$e\nu$	1.96 TeV	9.7 fb $^{-1}$	13	arXiv:1412.2862	
ATLAS	Z, W	-	7 TeV	4.7 fb^{-1}	61	arXiv:1612.03016	
ATLAS	Z	$Z \rightarrow \mu \mu, ee$	8 TeV	$20.2~{\rm fb}^{-1}$	504	arXiv:1710:05167	
ATLAS	W	$W ightarrow \mu \nu$	8 TeV	$20.2~{\rm fb}^{-1}$	22	arXiv:1710:05167	
ATLAS	W,Z	e , μ	5.02 TeV	25 pb^{-1}	5+22	arXiv:1810.08424	
ATLAS	W,Z	$e,\!\mu$	2.76 TeV	4 pb^{-1}	3	arXiv:1907.03567	
CMS	Z	$e,\!\mu$	7 TeV	4.5 fb^{-1}	144	arXiv:1310.7291	
CMS	W	μ	7 TeV	4.7 fb^{-1}	11	arXiv:1312.6283	
CMS	Ζ	e , μ	8 TeV	19.7 fb^{-1}	120	arXiv:1412.1115	
CMS	W	$e u,\mu u$	8 TeV	18.8 fb^{-1}	22	arXiv::1603.01803	
CMS	Z	$e,\!\mu$	13 TeV	35.9 fb^{-1}	12	arXiv:1909.04133	
LHCb	Z	$Z \rightarrow ee$	7 TeV	0.94^{-1}	9	arXiv:1212.4620	
LHCb	W	$W \to \mu \nu$	7 TeV	1 fb^{-1}	16	arXiv:1408.4354	
LHCb	Z	$Z \to ee$	8 TeV	2 fb^{-1}	17	arXiv:1503.00963	
LHCb	Ζ	$Z ightarrow \mu \mu$	7 TeV	1 fb^{-1}	17	arXiv:1505.07024	
LHCb	Ζ	$Z ightarrow \mu \mu$	8 TeV	2 fb^{-1}	17	arXiv:1511.08039	
LHCb	Z	$Z \to \mu \mu, ee$	13 TeV	294 pb^{-1}	35	arXiv:1607.06495	
CDF	$A_{FB}(m)$	$Z \rightarrow ee$	1.8 TeV	108 pb^{-1}	11	hep-ex/0106047	
CDF	$A_{FB}(m)$	$Z \to \mu \mu$	1.96 TeV	9.2 fb^{-1}	15	arXiv:1402.2239	
CDF	$A_{FB}(m)$	$Z \to ee$	1.96 TeV	9.4 fb ^{-1}	15	arXiv:1605.02719	
D0	$A_{FB}(m)$	$Z \to ee$	1.96 TeV	5 fb^{-1}	15	arXiv:1104.4590	
LHCb	$A_{FB}(m)$	$Z \to \mu \mu$	7,8 TeV	$1-2 {\rm fb}^{-1}$	26	arXiv:1509.07645	
CMS	$A_{FB}(m,y)$	$Z \to \mu \mu, ee$	7 TeV	5 fb^{-1}	40	arXiv:1207.3973	
CMS	$A_{FB}(m,y)$	$Z \to \mu \mu, ee$	8 TeV	19.7 fb^{-1}	63	arXiv:1207.3973	
ATLAS	$A_{FB}(m, y)$	$Z \to \mu\mu, ee$	7 TeV	4.7 fb^{-1}	48	arXiv:1503.03709	

AND THEORY PREDICTIONS

Collaboration with NNLOJET to get NNLO QCD predictions for Tevatron and LHC Drell-Yan measurements

Currently updating the xFitter study of Tevatron asymmetries to NNLO QCD and with more measurements

SOME OPEN ISSUES

- * At the current level of precision theory uncertainties are important and cannot be left out of a fit.
 - Restrict the fit to bins with high fiducial acceptance/small scale dependence? Apply q_T-resummation k-factors?
 - Include scales as NNPDF? Decorrelate the scale uncertainties until they are not constrained by the fit? Take an average of fits done with different scale choices/values?

EW CORRECTIONS

- * At the level of precision we have reached NLO EW corrections are a must
 - Started to work with MCSANC to obtain NLO EW k-factor corrections on top of NLO QCD
 - At the same time NNLOJET is trying to include NLO EW

- * Variations of EW parameters (m_W , $sin^2\theta_{eff}$, g_V , g_A) can then be obtained through separate runs.
 - ▶ The dimensionality of this space can be large (~10D).
- How can we easily incorporate this in xFitter?

Professor+xFitter

Common problem in Monte Carlo tuning, which attempts parameters optimisation for cases where evaluating the cost function at each iteration is expensive

***** The <u>Professor</u> MC tuning code:

- Computes an analytic interpolation of the change in each bin content due to a change in a parameter
- Takes as input a random scan of the n-dimensional space
- Interpolation obtained through SVD and saved in text files
- The uncertainty on the prediction at each generated point is propagated to the interpolation coefficients
- Alternative interpolation based on ML regression (SVM,NN) exists
- Ongoing work to write a reaction class to interface xFitter to the Professor interpolation files

AN EXAMPLE

Summary: DataDir: /Users/simoneamoroso/work/BfragmentationTunes/mc_A14_1p_rb ProfVersion: 2.3.0beta Date: 2018-06-13 23:15:19 DataFormat: binned 3 ParamNames: StringZ:rFactB Dimension: 1 MinParamVals: 0.002286 MaxParamVals: 1.965571 DoParamScaling: 1 NumInputs: 60 Runs: 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0 030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052 005 /ALEPH 1991 S2435284/d01-x01-y01#0 1.00000e+00 3.00000e+00 val: 1 4 2.84593e-05 2.55076e-05 -6.54271e-05 8.56469e-05 -4.32299e-05 2.28564e-03 1.96557e+00 err: 1 4 3.77197e-06 1.60237e-06 -4.00188e-06 5.05423e-06 -2.49733e-06 2.28564e-03 1.96557e+00 /ALEPH 1991 S2435284/d01-x01-y01#1 3.00000e+00 5.00000e+00 val: 1 4 0.000491661 -9.54378e-05 0.000399962 -0.00070756 0.000396728 2.28564e-03 1.96557e+00 err: 1 4 1.56779e-05 -1.52454e-06 6.39806e-06 -1.1346e-05 6.37009e-06 2.28564e-03 1.96557e+00 /ALEPH_1991_S2435284/d01-x01-y01#2 5.00000e+00 7.00000e+00 val: 1 4 0.00363055 0.000180995 -0.00233696 0.00356659 -0.00159831 2.28564e-03 1.96557e+00 err: 1 4 4.26037e-05 1.11832e-06 -1.40075e-05 2.13121e-05 -9.53633e-06 2.28564e-03 1.96557e+00 /ALEPH_1991_S2435284/d01-x01-y01#3 7.00000e+00 9.00000e+00 val: 1 4 0.0156042 -0.00146718 -0.00218803 0.00279062 -0.000562467 2.28564e-03 1.96557e+00 err: 1 4 8.83287e-05 -4.1255e-06 -6.45944e-06 7.90616e-06 -1.45605e-06 2.28564e-03 1.96557e+00 /ALEPH_1991_S2435284/d01-x01-y01#4 9.00000e+00 1.10000e+01 val: 1 4 0.0428584 -0.00520551 -0.00170628 -0.00133849 0.00336442 2.28564e-03 1.96557e+00 err: 1 4 0.000146387 -8.90091e-06 -3.00699e-06 -3.15481e-06 6.4654e-06 2.28564e-03 1.96557e+00 /ALEPH_1991_S2435284/d01-x01-y01#5 1.10000e+01 1.30000e+01 val: 1 4 0.0823333 -0.00868661 -0.00508601 -0.00205666 0.00565062 02.28564e-03 1.96557e+00 err: 1 4 0.0002029 -1.08337e-05 -5.76414e-06 -4.64623e-06 8.28669e-06 2.28564e-03 1.96557e+00

Dataset and bin number Polynomial coefficients

1 dimension

4 parameters

Interpolation ranges

Parametrisation uncertainty

POSSIBLE PROJECTS

- Update the xFitter NLO study of Tevatron asymmetries
 - Move to NNLO (+NLO EW?) and include QCD scales
 - Include more Tevatron measurements
- Perform a combination of the published unfolded AFB measurements, as a follow-up of the A₄ sensitivity paper
 - Impact on PDF fits and combination framework for $sin^2\theta_{eff}$
 - Norld best extraction of quark g_V , g_A couplings
- Perform a global fit to HERA+Tevatron+LHC DY measurements at NNLO QCD + NLO EW
 - Could be the fit of choice for precision EW measurements
- Any fit of PDF+MC parameters: non-perturbative corrections in jets, fragmentation function in W+charm,...
 - SM-EFT now available in MC generators (Powheg, aMC@NLO), interpolation would allow for PDF+EFT fits

SUMMARY

- Already at the present level of precision, the prescriptions for dealing with PDF uncertainties and their in-situ constraints are insufficient
- A full PDF + EW fit would give significant benefits in understanding PDF uncertainties and reduce their impact
- This will come at the price of a significantly more complex analysis
- Can we start work in this direction with xFitter?
- In the long term this will be the only way to fully exploit the HL-LHC potential for precise EW measurements