(JCDNUM Nik[hef

QCDNUM Status and Plans

Michiel Botje
Nikhef, Amsterdam

xFitter external workshop

DESY February 27, 2020

QCDNUM releases

* 17-01/15: Released March 17, 2019

e Out-of-the-box evolution routine with intrinsic heavy flavours

* New out-of-the-box singlet/non-singlet evolution routine
* New routine to set cuts in the kinematic plane

* More flexibility in setting thresholds

* Evolution start scale can be anywhere in u?

e Pdf access not anymore restricted to those with current
parameters

* 17-01/15: Update October 31, 2019

* Few minor fixes

QCDNUM program structure

Structure function packages
ZMSTF and HQSTF
QEDEVOL package to come

QCDNUM out-of-the
box routines

QCDNUM workspace (weight tables, a.tables, pdf tables)

QCDNUM out-of-the-box routines
o Unpolarised/polarised/timelike evolution
Import pdf sets (external or from toolbox)
Pdf interpolation, create lists or tables

QCDNUM toolbox routines
Partition local workspace into sets of tables
Weight calculations
N-fold DGLAP evolution
Convolution tools, fast convolution engine

@)

QCDNUM toolbox

@)

Local workspace

O O O O

DESY Febfruary 27, 2020 xFitter External Workshop

Why upgrade QCDNUM 7

* The QCDNUM code is written in Fortran77

* |ts key feature is an in-house dynamic memory manager that eliminates
the use of multi-dimensional Fortran arrays

* This in-house memory management allows for very fast code

* The memory manager has been developed over many years and starts
to hinder the maintenance of QCDNUM

* A way-out could be to abandon F77 and goto C++ dynamic memory
* My choice is to re-vamp the manager and provide a C++ interface to it

* Modularisation/encapsulation in object-oriented style will make code
maintenance much easier, also by other people than me

Long-term program structure

OUT-OF-THE-BOX C++ wrappers This branch exists

TOOLBOX

This structure needs a more
modular organisation of the
QCDNUM routines

This branch
C++ wrappers C++ classes .
does not exist

DESY Febfruary 27, 2020 xFitter External Workshop

Modular organisation of the code

e A module is defined as a table-set in a workspace, together with associated
routines that manage this table-set (create object, setters, getters, ...)

e A module in Fortran is just the equivalent of a class in C++

e The list of module types (classes) in QCDNUM is not very large:

— Memory manager

— x-grid

— p?-grid

— Convolution weight tables
— Evolution parameter tables
— a, tables

— Pdf tables

e Everything will be stored in modules = get rid of Fortran common blocks

e Fortran: all modules reside in one large workspace (allocated at compilation)
e C++: each module sits in a separate workspace (allocated dynamically)

First step in the symbiosis of Fortran and C++

C____ —_ —_ I —_ —_ — —_ I

QOGOR it inb_hdsize()s . * Fortran code and C++

CXXHFW #define fimb_hdsize FC_FUNC(imb_hdsize, IMB_HDSIZE) .

COfWant famb_hdsize()s B wrapper code now sit

CXXWRP /[== m e - . .

CXXWRP int imb_hdsize() together in one file

CXXWRP {

CXXWRP return fimb_hdsize(); C++

CXXWRP }

C____ —_ —_— —_— —_— —_— —_— J—— —_—

R — * Release script extracts
1ntfger fEnctign 1T?_Hd§ize(z

E T the C++ code and

—— Return header size

C—— Author: Michiel Botje h24@nikhef.nl ©02-12-19 pUtS It Into a d|reCt0ry
implicit double precision (a-h,0-z) in the release tree
include 'wspace@.inc'
imb_HdSize = nwHeader0 ‘ FO rtran ‘
return * Maintenance godsend

DESY Febfruary 27, 2020 xFitter External Workshop 6

N N N N NN

Most basic ingredient: memory module

Routine to convert 1-dim double precision array into a workspace (formatting)
Routines to create table-sets and populate them with one or more n-dim tables
Routines to clone, copy, disk dump and read tables and table-sets

Object fingerprinting (equal fingerprint = equal object structure)

Easy and fast navigation through linked-list structure

Each object has a tag-field to store attributes

Can build object hierarchies by storing addresses (pointers) in the tag-fields

Hooks to create very fast iterators and address functions

Memory module exists (in MBUTIL) with full documentation and a C++ interface ...

7 vy orkspaces \/ The C++ prototypes of these routines (without the scope resolution operator MBUTIL: :) are:
7 1 Workspace 1ay0ut int iaddr = imb_wsinit(double *w, int nw, int nt)
) e e void smb_setwsn(double *w, int nw)
int iaddr imb_wtable(double *w, int *imin, int *imax, int ndim)

7.2 Workspace routines in FORTRAN and C++

int iaddr = imb_newset(double *w)

int iaddr = imb_wclone(double *objl, double *w2)
73 Create a Workspace e e e e e e e void smb_tbcopy (double *tablel, double *table2, int itag)

void smb_tsdump (string fname, int key, double *tbset, int &ierr)
7.4: Cgller)/ a,\N()TI(SI)813e L int iaddr = imb_tsread(string fname, int key, double *w, int &ierr)

int marker = imb_marker(string otype)
imb_tbsize(int *imin, int *imax, int ndim) \//

imb_hdsize ()

int nwords
int nwords

7.5 Navigate a workspace

7.6 Pointer functions

Presently | am trying to

... and code examples in Fortran and C++ encapsulate the C++ interface
| S o R into a C++ class that creates and
integer fun?t}on iP3(w, ia, i, j, k) int }PBFdouble *Fb, int i, int j, int k) {]
et 1) o e & A e manages an arbitrary set of
save kk if (kk[0] '= ifp) { K3(tb, kk); } . .
ifp = imb_FingerPrint(w,ia) int ip = kk[1]+kk[2]*i+kk[3]*j+kk[4]*k; tables IN a dynam|c C++ array
if (kk(1) .ne.ifp) call K3(w, ia, kk) int ia = int(*(tb+1));
ip = kk(2)+kk(3)*i+kk(4)*j+kk(5)*k | return ia + ip;
iP3 = ia + ip } V4
return o
@ Up to now it all seems to work V/

Whats Next

* Freeze the current status in a new release qcdnum-17-01-16

°* The QCDNUM part of 16 will be the same as 15, except that a few
compiler complaints are fixed as a bonus

\

° | am currently writing the workspace C++ class

* This class serves as a proof of principle but is not essential (basic
memory management will be encapsulated anyway)

* Next step is then to code the grid modules

Will keep a keen eye on thread support (my dream) via OpenMP

* Let me know if new functionality is needed beyond version 15

