PDF profiling using the A₀ angular coefficient in NC DY

S. Amoroso, <u>F. Giuli</u> xFitter Developers' meeting

22/01/2020

Istituto Nazionale di Fisica Nucleare

Introduction

- > ATLAS measurement at \sqrt{s} = 8 TeV <u>here</u>
- > A_0 measured as a function of p_T^Z in three different rapidity regions:
 - > |y^z| < 1.0
 > 1.0 < |y^z| < 2.0
 - $2.0 < |y^2| < 2.0$ $2.0 < |y^2| < 3.5$
- > No cuts on lepton and jet kinematics

U

- > Applying just a cut on $p_T^Z > 11.4$ GeV as in this paper from Gauld et al.
- \succ A_0 constructed starting from Eq. (6) and Eq. (8) of this paper

Comparison with DYNNLO

- > LO predictions for $pp \rightarrow Zj$ at FO done using MG5_aMC@NLO v2.6.4 interfaced to APPLgrid v1.5.34 trough aMCfast v1.3.0
- CT14nnlo used as input PDF set at ME-level Accuracy of 0.1%
- Consistency in shape and values

Status of predictions

> LO predictions generated for the following regions of the phase space:

- > ATLAS-like phase space: 8, 13, 14 TeV
 - ▶ $|y^{Z}| < 1.0, 1.0 < |y^{Z}| < 2.0, 2.0 < |y^{Z}| < 3.5$
 - ▶ $80 < m_{ll} < 100 \text{ GeV}$
 - ▶ p_T^Z > 11.4 GeV
- ATLAS-like phase space: 8, 13, 14 TeV
 - \succ same as above BUT integrated in y^{Z}
- CMS-like phase space: 8 TeV only
 - ▶ $|y^{Z}| < 1.0, 1.0 < |y^{Z}| < 2.1$
 - ▶ $80 < m_{ll} < 100 \text{ GeV}$
- > ATLAS low-mass region: 13, 14 TeV
 - > same p_T^Z , y^Z binning scheme as in the ATLAS 8 TeV measurement
 - ▶ 4 < m_{ll} < 8 GeV</p>
 - > $p_T^Z > 2 \text{ GeV}$ (but looking at A_0 just for $p_T^Z > 11.4 \text{ GeV}$)
- LHCb-like phase space: 13, 14 TeV
 - ► 2.0 < $|y^{Z}|$ < 4.5
 - ▶ $80 < m_{ll} < 100 \text{ GeV}$
 - ▶ $p_T^Z > 10.5 \, \text{GeV}$

Predictions used by Simone to run some fits

4

NNLOJET predictions for:

- ATLAS 8 TeV (y^Z integrated)
- CMS 8 TeV
- LHCb 8 TeV

5

1.2

8.0

0.6

1

n/^px/^n/^px

ATLAS-like phase space

> Sensitivity for xg and gluon/sea ratio for $10^{-2} < x < 0.1$

22/01/20

> No much difference when considering pr_{2}^{2} dictions at $r_{13}^{CT_{14}}$ or 14 TeV

 $Q^2 = 1.9 \text{ GeV}^2$

0.9

6

Pinso I modified the ATLAS & TeV datafiles scaling the uncertainties by a factor 2, 5 and 10

A reduction of a factor 5 might be a good approximation for HE/HL_LHC studies 4 mile a good approximation for HE/HL_LHC cT14nnlo in the rev interval approximation for HE/HL_LHC interval approximatinterval approximatinterval approximation for HE/HL_LHC inter

Going to lower invariant masses

ATLAS low mass region:

- > same p_T^Z , y^Z binning scheme as in the AILAS 8 TeV measurement
- ▶ 4 < m₁₁ < 8 GeV</p>

10⁻¹

Х

Going to lower invariant masses

> Not a huge difference if considering 13 TeV or 14 TeV predictions

1

1

Francesco Giuli - francesco.giuli@cern.ch

9

Going to higher rapidities

10⁻³

- ^{0.9} → LHCb-like phase space: 14 TeV predictions ^{0.8} → 2.0 < $|y^{Z}|$ < 4.5 ^{0.8}
 - > 80 < m_{ll} < 100 GeV ^{0.7} ^{10⁻⁴} p^{-3} p^{-3} >0⁻¹ 0.6² GeV⁻¹_{x x} ^{0.7}

Same level of uncertaities as ATLAS, but statistical uncertainty multiplied by $\sqrt{5}$

0.9

Going to higher rapidities

P. Quite an extreme test: the certainties reduced by a factor 50 or 100 in the 12 <</p> $m_{ll} < 26 \text{ GeV region}$ $m_{ll}^{0.7} < 26 \text{ GeV region}$ Here the results for the reduction of a factor 100 are shown

Conclusions & outlook

- > PDFs con be constrained using A_0 events in DY neutral events
- > The most affected PDFs are gluon, gluon/sea ratio and strange (at $Q^2 = m_Z^2$)
- Several predictions at 13 and 14 TeV created probing different regions of the phase space
- > Going to low invariant masses helps in constraining PDFs also for $x \ge 0.2-0.3$
- > Going to higher rapidities does not help because PDFs are sensible to A_0 in the medium- p_T^Z region or intermediate y^Z
- kFs computed wrt available NNLOJET predictions and passed them to Simone to run some real fits (not profiling) with ATLAS and CMS data at 8 TeV

Backup Slides

 $\begin{array}{c} 0 & 0 \\ 0.2 & = 0.2^{\text{Data}} & \frac{3924}{8924} & \frac{392}{8} & \frac{392}{8}$

1. \blacktriangleright 1. Having a look at the theory effors, I can see some $|y^{Z}|$ dependence:

- \succ Errors get smaller when increasing y^z
- ¹ ¹ \succ Errors increase with p_T^Z till $p_T^Z \sim 45$ GeV and then start decreasing again

 $\mathbb{R}_{0.9}^{0.9}$ Remember that results are LO (higher accuracy grids production ongoing)

NLO predictions are running ^{0.8} they should be ready ~next week ^{0.8} 0.8 18 Reofiling are runised a bin effective it hereby PDE shape nor upon 18 Reofiling are runised.

 \mathcal{P} Brofiling exercise \rightarrow not a big effect on either on PDF shape nor uncertainties

