TMD splitting kernels project

L. Keersmaekers¹, F. Hautmann¹², M. Hentschinski³, H. Jung⁴, A. Kusina⁵, K. Kutak⁵, A. Lelek¹

¹University of Antwerp, ²University of Oxford, ³Universidad de las Americas Puebla, ⁴DESY ⁵IFJ PAN

January 9, 2020

Universiteit Antwerpen We want to implement TMD splitting functions in the PB method. Why?

- Correct treatment of kinematics at each branching
- Connection with small-x
- Reproduces Kernels of different evolution equations in different limits

First implementation:

TMD splitting functions in the PB equation, but still collinear splitting functions in the Sudakov \rightarrow because Sudakov form factor depends on k_{\perp} : can not been taken from table

Integrated TMDs

- Dynamical z_M , $q_0 = 1$ GeV
- Starting distribution: QCDNUM

Implementation with:

- PB method (LO)
- PB with TMD Splitting functions

Integrated TMDs

 Starting distribution: QCDNUM

Implementation with:

- PB method (LO)
- PB with TMD Splitting functions

Integrated TMDs:

Gluon: Increase for large range of x

Integrated TMDs

- Dynamical z_M , $q_0 = 1$ GeV
- Starting distribution: QCDNUM

Implementation with:

- PB method (LO)
- PB with TMD Splitting functions

Integrated TMDs:

- Gluon: Increase for large range of ×
- Quarks: Decrease for low and intermediate ×

TMDs vs \textbf{k}_{\perp}

- PB method (LO)
- PB with TMD Splitting functions

Small x:

Gluon: increase in large region of k⊥

- PB method (LO)
- PB with TMD Splitting functions

Small x:

- Gluon: increase in large region of k_⊥
- Quarks: decrease for middle and high k_⊥, drop for very large k_⊥

- PB method (LO)
- PB with TMD Splitting functions

Small x:

- Gluon: increase in large region of k⊥
- Quarks: decrease for middle and high k_⊥, drop for very large k_⊥

Large x:

Only small effects

New results

Implementation including k_{\perp} -dependent Sudakov form factor, based on veto-algorithm Still needs cross-checks

iTMDS: With TMD sudakov: increase in small-x compared to collinear sudakov

k_{\perp} -dependence of TMD splitting functions

Splitting functions (except P_{qg}) rise for large k_{\perp}

New results (2)

