J/ψ Photoproduction at NLO with NRQCD

Mathias Butenschön

II. Institut für Theoretische Physik Universität Hamburg

11 January 2010

In Collaboration with Bernd A. Kniehl arXiv:0909.2798

Introduction	Divergences	Results	Summary
●00000	00000	000	00

Heavy Quarkonia

Heavy quarkonia: Bound states of heavy quark and its antiquark.

- Charmonia (cc) and Bottomonia (bb)
- Top decays too fast for bound state.

n ^{2S+1} L _J	Name	Mass
1 ¹ S ₀	η_c	2980 MeV
1 ³ S ₁	J/ψ	3097 MeV
1 ³ P ₀	χ_{c0}	3415 MeV
1 ³ P ₁	Xc1	3511 MeV
1 ¹ P ₁	hc	3526 MeV
1 ³ P ₂	Xc2	3556 MeV
2 ¹ S ₀	η_c'	3637 MeV
2 ³ S ₁	ψ'	3686 MeV

Charmonium spectrum (cc):

- 1974: Discovery of *J*/ψ:
 First observation of heavy quarks
- Long lifetime of *cc*: Spectrum and radiative transitions seen ⇒ Potential models
- Calculation of energy spectrum: Challenge for lattice QCD.
- Production and decay rates: One of first applications for perturbative QCD.

Introduction	Divergences	Results	Summary
00000	00000	000	00

Production and Decay Rates of Heavy Quarkonia

The classic approach: Color-singlet model

• Calculate cross section for $c\overline{c}$ -pair in physical color-singlet

(= color neutral) state. In case of J/ψ : $c\overline{c}[{}^{3}S_{1}^{[1]}]$

- Then multiply by J/ψ wave function or its derivative at origin.
- Leftover infrared divergences at P wave quarkonia.

 Theoretically inconsistent

Nonrelativistic QCD (NRQCD):

- 1995: Rigorous effective field theory by Bodwin, Braaten, Lepage
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv ≪ Λ_{QCD} ≪ M)
- Theoretically consistent: No leftover singularities.
- Can explain hadroproduction at Tevatron

uction	Divergences	Results	Summary
000	00000	000	00

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: Every possible Fock state, including color-octet states.
- $\sigma_{c\overline{c}[n]}$: Production rate of $c\overline{c}[n]$, calculated in perturbative QCD.
- ⟨O^{J/ψ}[n]⟩: Long distance matrix elements (ME): describe cc[n] → J/ψ, universal, extracted from experiment.

Scaling rules: MEs scale with relative velocity v ($v^2 \approx 0.2$):

• Double expansion in v and α_s .

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals color-singlet model.

Intro

Introduction	Divergences	Results	Summary
000000	00000	000	00

Production of J/ψ : NRQCD vs. Experiment

Hadroproduction at Tevatron:

Photoproduction at HERA:

Our work: NRQCD calculation for photoproduction at NLO \implies Aim: Establish universality of long distance matrix elements.

Introduction	Divergences	Results	Summary
000000	00000	000	00

Production of J/ψ : Summary of Calculations

Open question of ME universality:

- (Our) NLO NRQCD calculation: Only after 13 years!
- Difficulty: Virtual corrections to *P* states

Introduction	Divergences	Results	Summary
00000	00000	000	00

Direct J/ψ Photoproduction

Factorization formulas:

 Convolute partonic cross sections with proton PDFs:

$$\sigma_{\scriptscriptstyle \mathsf{hadr}} = \sum_i \int dx \; f_{i/p}(x) \cdot \sigma_{\scriptscriptstyle \mathsf{part},i}$$

• NRQCD factorization:

$$\sigma_{\scriptscriptstyle \mathsf{part},i} = \sum_n \sigma(\gamma i
ightarrow c \overline{c}[n] + X) \cdot \langle \mathsf{O}^{J/\Psi}[n]
angle$$

Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

$$\begin{aligned} &A_{c\overline{c}[^{3}\mathsf{S}_{1}^{[1/8]}]} = \varepsilon_{\alpha} \operatorname{Tr}\left[\mathsf{C}\,\Pi^{\alpha}\,A_{c\overline{c}}\right]|_{q=0} \\ &A_{c\overline{c}[^{3}\mathsf{P}_{l}^{[8]}]} = \varepsilon_{\alpha\beta}\,\frac{d}{dq_{\beta}}\operatorname{Tr}\left[\mathsf{C}\,\Pi^{\alpha}\,A_{c\overline{c}}\right]|_{q=0} \end{aligned}$$

- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- q: Relative momentum between c and c.

Introduction	Divergences	Results	Summary
000000	●0000	000	00

Cancellation of Divergences

UV-divergences: Cancellation within virtual corrections:

- Loop integrals
- Charm mass renormalization
- Strong coupling constant renormalization
- Wave function renormalization of external particles

IR-divergences: Cancellation between:

- Virtual corrections (loop integrals + wave function renormal.)
- Soft and collinear parts of real corrections
- Universal part absorbed into proton and photon PDFs
- Radiative corrections to long distance matrix elements

Introduction	Divergences	Results	Summary
000000	0000	000	00

Overview of IR Singularity Structure

Introduction	Divergences	Results	Summary
000000	0000	000	00

Structure of Soft Singularities

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$\begin{split} A_{\text{soft,s}} &= A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0) \\ A_{\text{soft,p}} &= A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0) \\ |A_{\text{soft,s}}|^2 &= |A_{\text{Born,s}}|^2 \cdot E(0)^2 \\ |A_{\text{soft,p}}|^2 &= |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A^*_{\text{Born,s}} A_{\text{Born,p}} \cdot E(0) E'(0) \\ &+ |A_{\text{Born,s}}|^2 \cdot E'(0)^2 \end{split}$$

Introduction	Divergences	Results	Summary
000000	00000	000	00

Radiative Corrections to Long Distance MEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

$$\begin{array}{l} O[n] = \text{4-fermion operators} \\ (n = {}^{3}S_{1}^{[1]}, {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}, \ldots \end{array}$$

Corrections to $\langle O^{J/\psi}[^3\!S_1^{[1/8]}]\rangle$ with NRQCD Feynman rules:

• UV singularity cancelled by renormalization of 4-fermion operat.

• IR singularity cancels soft #3 terms of *p* states!

Introduction	Divergences	Results	Summary
000000	0000●	000	00

Real Corrections: Phase Space Slicing

Example: Squared amplitude for $\gamma + g \rightarrow c\overline{c}[{}^{3}S_{1}^{[8]}] + d + \overline{d}$:

- Infrared divergences: Cannot do complete integration numerically.
- Collinear and soft limits: Phase space and |M|² factorizes ⇒ Analytical D dimensional integration possible!

(Plotted against $(k_d + k_{\overline{d}})^2$ and $\cos \theta(c\overline{c}, d)$ in $d \cdot \overline{d}$ rest frame for $s = 100 \text{ GeV}^2$, $t = -20 \text{ GeV}^2$.)

Idea: Split integration into two regions:

- $\delta s < 100(k_i \cdot k_j)^2$ or $\delta \sqrt{s} < 2E_{3/4}$: Analytical integration.
- **2** $\delta s > 100(k_i \cdot k_j)^2$ and $\delta \sqrt{s} > 2E_{3/4}$: Numerical integration.

Both contributions: $\log \delta$ terms. These terms cancel for small δ !

Introduction	Divergences	Results	Summary
000000	00000	000	00

Confront Results with Data (1)

Direct J/ψ photoproduction at HERA:

- Color-octet MEs from leading order Tevatron fit

\implies CS not enough! CS+CO better!

Introduction	Divergences	Results	Summary
000000	00000	000	00

Confront Results with Data (2)

•
$$z = \frac{P_{J/\psi} \cdot k_{\text{proton}}}{k_{\gamma} \cdot k_{\text{proton}}}$$

- Proton rest frame:
 z = Fraction of photon energy going to J/ψ
- z ≤ 0.45: Expect contributions from resolved photoproduction
- Color-octet MEs from leading order Tevatron fit

\implies CS not enough! CS+CO better!

Introduction	Divergences	Results	Summary
000000	00000	000	00

Confront Results with Data (2)

•
$$z = \frac{P_{J/\psi} \cdot k_{\text{proton}}}{k_{\gamma} \cdot k_{\text{proton}}}$$

- Proton rest frame:
 z = Fraction of photon energy going to J/ψ
- z ≤ 0.45: Expect contributions from resolved photoproduction
- Color-octet MEs from leading order Tevatron fit

\implies CS not enough! CS+CO better!

Introduction	Divergences	Results	Summary
000000	00000	000	00

Parameter Dependences

Dependence on slicing parameter and unphysical scales:

- Phase space slicing works!
 - \Longrightarrow Check on our kinematics and soft / collinear limits
- Dependence on renormalization and factorization scale: $0.7 \leq \sigma/\sigma_0 \leq 1.6$ if $0.5 < \mu_r/\mu_0 = \mu_f/\mu_0 < 2$.

Introduction	Divergences	Results	Summary
000000	00000	000	●O
Summary			

Our project: Test NRQCD

- NRQCD provides rigorous factorization theorem for production and decay of heavy quarkonia.
- Inclusion of intermediate color-octet (= color charged) states, which explain Tevatron hadroproduction.
- But: Need to proof universality of CO MEs.
- Therefore: Since 13 years want for NRQCD hadroproduction and photoproduction predictions at NLO.

Our results: Direct photoproduction at HERA

- Color-singlet contributions not enough to explain data
- Sum of color-singlet and color-octet seems to explain data better.
- But: Uncertainty due to CO MEs from LO Tevatron fit

Chaolia and		000	0.
Introduction	Divergences	Results	Summary

Checks on our calculation:

- Checked cancellation of all singularities analytically.
- Two different reduction methods for virtual corrections: Checked analytically that results are equal.
- Checked real correction amplitudes against MadOnia.
- Checked phase space slicing parameter independence.
- Scould reproduce M. Krämer's NLO color-singlet results.

Outlook:

- Do second step: Hadroproduction at NLO.
- Furthermore: Calculate J/ψ polarization:
 - For photoproduction and hadroproduction at NLO
 - At high p_T both NLO CSM and LO NRQCD fail to describe data.