D* and Jets in Photoproduction

Zlatka Staykova

FH1

Smallx Lund-DESY meeting 25th January 2010 Lund

Outline

- ► Motivation
- ► Phase space definitions
- ► Measurement of Inclusive D* cross sections and 2-jets in Photoproduction at HERA

Motivation and Goal of the Analysis

- Photoproduction of charm events— a good ground for testing pQCD and parton evolution models
- ▶ $\Delta \varphi$ in large $\Delta \eta$ → enough phase space for emissions
- ► $M_x^2 = (p + q (p_{j1} + p_{j2}))^2$ the invariant mass of the remnant- large values, higher order emissions

Phase Space Definitions

- ▶ Untagged photoproduction, $Q^2 < 2 \text{ GeV}$ and $0.1 < y_h < 0.8$
- \triangleright D* selection:
 - ▷ D* reconstructed in the golden decay channel $D^* \longrightarrow D^0 \pi_{slow} \longrightarrow K\pi\pi_{slow}$
 - ho p_t(D*) > 2.1 GeV and $|\eta(D^*)| < 1.5$
- ▶ Jet selection:
 - ▶ D* was treated as a leading particle
 - $\,\,^{\triangleright}\,$ k_T clustering algorithm, FastJet package was used, R=1, $p_t^{min}=1.\,GeV$
 - ho p_t > 3.5 GeV and $|\eta(D_{
 m jet}^*)| < 1.5$ and $-1.5 < \eta_{
 m other~jet} < 2.9$
 - $~~ M_{jj}^{inv} > 6\, GeV$

Cross Section Determination

$$\sigma = \frac{N(D^*)}{\mathcal{L} \cdot \varepsilon^{rec}(TE)}$$

- ▶ N(D*) determined by a fit with an asymmetric function— Crystal Ball together with the Granet parametrization for the background.
- ► $N(D*) = 3844 \pm 106$ total number of D^* mesons
- ▶ Pythia Massless was used to correct the data for detector effects
- ▶ Only statistical uncertainties are shown in the histograms

Cross Sections– D* and event properties

اكاك/dn] [pp/GeV]

- $\sigma = 9.5 \pm 0.31^{\mathrm{stat}} \,\mathrm{nb}$
 - Cascade underestimates the data at low p_t and overestimates the data at high p_t
 - Pythia Massless describes $\eta(D^*)$ spectrum
- $W_{\gamma p}$ is not described by non of the Mc, Cascade does the best work

Pythia Resolved

Cross Sections—Jet Quantities

Cross Sections—Angular Correlations

Cross Sections—Correlations

Summary

- ➤ Cross sections of photoproduction events containing D* meson and 2-jets at HERA was measured and compared to different LO MC models
- ▶ Major technical problems are now solved, we can continue with "bread and butter"
- ► Next:
 - More differentials and double differentials (ideas are VERY WELCOME)
 - Systematic uncertainties (work in progress)
 - ▶ Compare with NLO models- FMNR and mainly MC@NLO
 - ▶ Most importantly– finish the thesis :)