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Questions

◮ What is the dynamics of diffractive excitation?
◮ Diffractive excitation often treated by two mechanisms:

a) Low mass: Good–Walker, determined by the
fluctuations in the process

b) High mass: Triple Regge, determined by fitted
parameters

Are these related?

What is the nature of the fluctuations?
◮ Saturation effects large in pp collisions.

How can we describe gap survival form factors and
factorization breaking?
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Outline of the talk

1. Introduction

2. Effects of fluctuations

3. Effects of saturation – “Enhanced diagrams”

4. Relation Good-Walker – Triple Regge
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Introduction
Eikonal approximation
Diffraction, saturation, and multiple interactions more easily
described in impact parameter space

Convolution in transv. mom. ∼ Multiplication in b-space

Scattering driven by absorption into inelastic states i , with
weights 2fi

⇒ Elastic amplitude t = 1 − e−
P

fi

For a structureless projectile we find:







dσtot/d2b ∼ 〈2t〉
σel/d2b ∼ 〈t〉2

σinel/d2b ∼ 〈1 − e−
P

2fi 〉 = σtot − σel
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Good - Walker

If the projectile has an internal structure, the mass eigenstates
can differ from the eigenstates of diffraction

Diffractive eigenstates: Φn; Eigenvalue: tn

Mass eigenstates: Ψk =
∑

n cknΦn (Ψin = Ψ1)

Elastic amplitude: 〈Ψ1|t |Ψ1〉 =
∑

c2
1ntn = 〈t〉

dσel/d2b ∼ (
∑

c2
1ntn)2 = 〈t〉2

Amplitude for diffractive transition to mass eigenstate Ψk :

〈Ψk |t |Ψ1〉 =
∑

n ckntnc1n

dσdiff /d2b =
∑

k 〈Ψ1|t |Ψk 〉〈Ψk |t |Ψ1〉 = 〈t2〉

Diffractive excitation determined by the fluctuations:

dσdiff ex/d2b = dσdiff − dσel = 〈t2〉 − 〈t〉2
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What are the diffractive eigenstates?

Miettinen–Pumplin (1978), Hatta et al. (2006)

Parton cascades, which can come on shell through interaction
with the target

y

virtual cascade inelastic int. high mass exc. low mass exc.
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Triple Regge
High mass diffraction usually described by triple Regge
formalism

proj.

target

s1

s2

βppP

gPPP

σtot ∼ β2
ppP sǫ; ǫ = αP(0)− 1

σdiff .ex. ∼ β3
ppP gPPP sǫ

1 s2ǫ

2

(Durham group: 3 different
pomerons for different impact
parameters)

Why not the Good-Walker formalism? Fluctuations in the
pomeron ladder unknown

Dipole cascade: Large fluctuations in the pomeron ladder

Can Good-Walker describe also high mass excitation?
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Saturation
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Difference between pp and γ∗p

Factorization breaking in pomeron exchange
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Effect of unitarization?
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Dipole cascade models

Mueller Dipole Model

Evolution in transverse coordinate space

Q

Q̄

1

0

1

0

r01

2

r12

r02

1

0

2

3

y

x

Emission probability: dP
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Color screening: Suppression of large dipoles

∼ suppression of small k⊥ in BFKL
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Dipole-dipole scattering

Single gluon exhange ⇒ Color reconnection

i j
2

1 3

4

Born amplitude: fij =
α2

s
2 ln2

(

r13r24
r14r23

)

Reproduces LL BFKL
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Lund Dipole Cascade model 1

The Lund model is a generalization of Mueller’s dipole model,
with the following improvements

◮ Include NLL BFKL effects
◮ Include Nonlinear effects in evolution
◮ Include Confimement effects

Remove virtual emissions → Final states

MC: DIPSY

1E. Avsar-Flensburg-GG-Lönnblad
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Applications

Initial state wavefunctions:

γ∗: Given by perturbative QCD. ΨT ,L(r , z; Q2)

proton: Dipole triangle
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Total and elastic cross sections

pp
σtot and σel
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γ∗p
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Diffractive cross sections
proj.

Ψproj =
∑

n cnΦp,n

target

Ψtarget =
∑

m dmΦt,m

y1

y2

〈〈t〉2
targ〉proj gives diffractive scattering with M2

X < exp(y1)

Vary y1 gives dσ/dM2
X
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pp 1.8 TeV
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γ∗p

Example MX < 8 GeV, Q2 = 4, 14, 55 GeV2.
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What is the nature of the fluctuations?

γ∗p: Power spectrum dP
df ≈ A f−p

(with cutoff for small and large f -values)

The power p is independent of b, but grows slowly with Q2,

∼ 1.7 at Q2 = 14GeV 2; ∼ 1.8 at Q2 = 50GeV 2 for W = 220.

W = 220 Q2
= 14 W = 1000, Q2

= 14
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Born approximation small ⇒ Unitarity effects small;
t ≈ f =

∑

fij

The distribution is wide. The parametrization gives

〈t〉 = −A Γ(1 − p), 〈t〉2 small

Vt ≈ 〈t2〉 = 2(1 − 1/22−p) × 〈t〉

The ratio depends only on p; same for all b-values
σdiff
σtot

= 1 − 1/22−p

or
σdiff
σtot

∼ 0.18 for Q2 = 14 GeV2 falling to ∼ 0.13 at Q2 = 50 GeV2.
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pp:

Born approximation large. Distribution dP
df ≈ A f p e−af

W = 100 GeV W = 2000 GeV (b in GeV−1)
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a is independent of b, but falling with energy,

a ≈ 1.4 for W = 100 GeV and ≈ 0.8 for W = 2000 GeV

Fix energy ⇒ p (and 〈f 〉) decreases for larger b
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Saturation

The variance in the Born amplitude is similar to γ∗p for lower
Q2-values

〈f 〉 = p+1
a ; Vf

2〈f 〉 = 1
2a ∼ 0.35 for W = 100 GeV

However: 〈f 〉 is large ⇒ Unitarity effects important
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Saturation reduces the fluctuations

Corresponds to the “enhanced diagrams” in multipomeron
diagrams

Saturation ⇒

Factorization breaking in diffractive excitation
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Factorization breaking

Difference between
pp and γ∗p
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Impact parameter profile

Central collisions:
〈t〉 large ⇒
Fluctuations small

Peripheral collisions:
〈t〉 small ⇒
Fluctuations small
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Largest fluctuations when 〈f 〉 ∼ 1 and 〈t〉 ∼ 0.5

Circular ring expanding to larger radius at higher energy
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Relation to Triple-Regge

Does the result describe the Regge formulae?

For the bare pomeron we have:

σtot ∼ β2
ppP sǫ

σel ∼ β4
ppP s2ǫ

σd .exc. ∼ β3
ppP gPPP s1.5ǫ

(with logarithmic corrections for σel and σd .exc.)
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Summary
◮ In the eikonal approximation diffractive excitation is directly

determined by the fluctuations in the scattering process.
◮ The fluctuations in the dipole cascade evolutions are large
◮ It reproduces the triple-pomeron results without new free

parameters. (The bare pomeron intercept is αP ≈ 1.2.)
◮ It can describe the large diffractive cross section in DIS.
◮ In pp the fluctuations are large for the Born amplitudes, but

strongly suppressed by unitarity above ∼ 20 GeV.
◮ Diffr. exc. in pp is an expanding ring in b-space.

Conclusion: The Dipole Cascade Model can describe diffractive
excitation in γ∗p and pp, to small and large masses, in a unified
formalism, without new parameters (besides those determined
by the total and elastic cross sections).
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Impact parameter profile
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As observed earlier, diffractive excitation is a peripheral process

Circular ring expanding to larger radius at higher energy.

Extrapolate to smaller energy ⇒

The hole closed for W ∼ 20 GeV. Agrees with Goulianos’
estimate!
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Diffractive final states

Coherence effects important for subtracting el. scatt.

dσn = c2
n (

∑

m d2
m tnm − 〈t〉 )2

〈t〉 =
∑

n
∑

m c2
n d2

m tnm
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Toy model

(Abelian emissions; no saturation)

Ψin =
∏

i(αi + βi)|0〉

parton i produced with prob. |βi |
2, interacts with weight fi

Diff. exc. states:

Ψj = (−βj + αj)
∏

i 6=j(αi + βi)|0〉

dσel ∼ (
∑

i β
2
i fi)2

dσj ∼ α2
j β

2
j f 2

j
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pp scattering

〈t〉 = 1 − ( a
a+1)p+1 = 1 − ( a

a+1 )a〈f 〉 → 1 when 〈f 〉 → ∞

Vt = ( a
a+2)p+1 − ( a

a+1)2p+2 → 0 when 〈f 〉 → ∞
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