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Questions

» What is the dynamics of diffractive excitation?
» Diffractive excitation often treated by two mechanisms:

a) Low mass: Good-Walker, determined by the
fluctuations in the process

b) High mass: Triple Regge, determined by fitted
parameters
Are these related?
What is the nature of the fluctuations?
» Saturation effects large in pp collisions.

How can we describe gap survival form factors and
factorization breaking?
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Outline of the talk

1.
2.
3.
4.

Introduction
Effects of fluctuations
Effects of saturation — “Enhanced diagrams”

Relation Good-Walker — Triple Regge
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Introduction
Eikonal approximation

Diffraction, saturation, and multiple interactions more easily
described in impact parameter space

Convolution in transv. mom. ~ Multiplication in b-space

Scattering driven by absorption into inelastic states i, with
weights 2f;

= Elastic amplitude t =1 — e~ 2f
For a structureless projectile we find:
dO’tot/dzb ~ <2t>

oe/d%b ~ (t)2
Jinel/dzb ~ <1 - e_ZZfi> = Otot — Oel

Lund University
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Good - Walker

If the projectile has an internal structure, the mass eigenstates
can differ from the eigenstates of diffraction

Diffractive eigenstates: ¢,; Eigenvalue: t,

Mass eigenstates: Uy = 3" Cun®n (Win = V)

Elastic amplitude: (W |t|W;) = Y c2 ty = (t)

doe/d?b ~ (Y- c2 th)? = (t)?

Amplitude for diffractive transition to mass eigenstate Wy:
(Wi[t|W) = 32 CkntnCan

dogi /d?b = Y (Walt|Wi) (Wi [t|Wa) = (t%)

Diffractive excitation determined by the fluctuations:
dogitex /d*b = dogir — doe = (t?) — (t)?
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What are the diffractive eigenstates?

Miettinen—Pumplin (1978), Hatta et al. (2006)

Parton cascades, which can come on shell through interaction
with the target

g

[
.

RN

virtual cascade  jqjastic int.  high mass exc. low mass exc.
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Triple Regge
High mass diffraction usually described by triple Regge
formalism _
proj. ——~
T o~ G st = ap(0) 1
S1 —
\
777777 — Jdppp Odiff.ex. ™ IBSpP gPPP Si S%E
\ (Durham group: 3 different
Sy . .
\ pomerons for different impact
! parameters)
target ‘

Why not the Good-Walker formalism? Fluctuations in the
pomeron ladder unknown

Dipole cascade: Large fluctuations in the pomeron ladder

Can Good-Walker describe also high mass excitation?
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Saturation
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Dipole Cascade Models,

Difference between pp and ~*p

Factorization breaking in pomeron exchange

=
oo - H1 fit-2 —~+- CDF data
e H1 fit-3 B2 27 Gev
100¢ (Q%= 75 GeV?) 0.035 < £ < 0.095
|t]<1.0GeV?
10 b
Effect of unitarization?
1L
o1l — H1 2002 0,> QCD Fit (prel.)
1

0.1

o
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Nature of the fluctuations,

Dipole cascade models

Mueller Dipole Model

Evolution in transverse coordinate space

Qe1

Qso0

Color screening: Suppression of large dipoles

~ suppression of small k; in BFKL
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Nature of the fluctuations,

Dipole-dipole scattering

Single gluon exhange = Color reconnection

Reproduces LL BFKL
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Nature of the fluctuations,

Lund Dipole Cascade model *

The Lund model is a generalization of Mueller’s dipole model,
with the following improvements

» Include NLL BFKL effects
» Include Nonlinear effects in evolution
» Include Confimement effects

Remove virtual emissions — Final states

MC: DIPSY

1E. Avsar-Flensburg-GG-Lénnblad
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Nature of the fluctuations,

Applications

Initial state wavefunctions:

~v*: Given by perturbative QCD. Wt | (r,z; Q?)

proton: Dipole triangle
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Nature of the fluctuations,

Total and elastic cross sections

PP

Otot and Oe¢l
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Nature of the fluctuations,

)
*
©
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Nature of the fluctuations,

Diffractive cross sections

proj. |
\
\
Y1 ‘ Vo) = Zn Cn®Pp,n
\
_] _____
\
\
Y2 ‘ wtarget = Zm qu)t,m
\
X
target |

((t)Grg ) proj gives diffractive scattering with M2 < exp(y1)

Vary y; gives do/dMZ2
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pp 1.8 TeV

0.4 T T T T

03 b—

0.2 Z

0i/Otot
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Dipole Cascade Models
Nature of the fluctuations,

*
7P
Example My < 8 GeV, Q2 = 4,14,55GeV?.
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Summary,

What is the nature of the fluctuations?

7P

The power p is independent of b, but grows slowly with Q?,

Power spectrum

~ Af~P

(with cutoff for smaII and large f-values)

~ 1.7 at Q2 = 14GeV?; ~ 1.8 at Q2 = 50GeV?2 for W = 220.

1

relative frequency

W =220 Q% =14
00000 T

W = 1000, Q? =14

100000

DIPSY

b=6 b=6 " DIPSY |
10000 Cf? + cutoff 10000 Cf + cutoff _
>
(8] )=
1000 E g 1000 F b=4 E
g
100 4 £ 100 f b=2 4
[}
2
10 4 £ 10 F b=9 4
°
1 E 1k .
Ol 1 1 Ol 1 1
1e-05 0.0001 0.001 001 0.1 1e-05 0.0001 0.001  0.01

f

f

Fluctuations, Saturation, Diffraction

19

Gosta Gustafson

Lund University



Dipole Cascade Models”
Nature of the fluctuations

Summary.

Born approximation small = Unitarity effects small;

txef= Zfij
The distribution is wide. The parametrization gives
t)y = —AT(1 - p), (t)? small

Vi & (t2) = 2(1 — 1/227P) x (t)
The ratio depends only on p; same for all b-values

dun — ] /92

Otot

2itt ~ 0.18 for Q> = 14 GeV? falling to ~ 0.13 at Q2 = 50,GeV7.

Fluctuations, Saturation, Diffraction 20 Gosta Gustafson
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Summary,

pp:
Born approximation large. Dlstrlbutlon df ~ AfPe-a

W = 100 GeV W =2000GeV (bin GeV1)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

' DIPSY ——
ctPes

relative frequency
relative frequency

a is independent of b, but falling with energy;,
a~ 1.4 forW =100 GeV and ~ 0.8 for W = 2000 GeV

Fix energy = p (and (f)) decreases for larger b
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Summary.

Saturation
The variance in the Born amplitude is similar to v*p for lower
QZ2-values
(f) = Bt 2 = 2= ~ 0.35 for W = 100 GeV

However: (f) is large = Unitarity effects important

25 T T T T
DIPSY, ——

o 2l ciPe™
2 t-distribution
s 15f
% 1r W = 2000 GeV
E 05
. . . : b=0,3,69Gev1
0 0.2 0.4 0.6 0.8 1
t=1-ef
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Summary.

Saturation reduces the fluctuations

Corresponds to the “enhanced diagrams” in multipomeron
diagrams

Saturation =

Factorization breaking in diffractive excitation

Fluctuations, Saturation, Diffraction 23 Gosta Gustafson Lund University
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Summary.

Factorization breaking

Difference between

pp and y*p

g
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Saturation, Diffraction

Cf. Goulianos’ saturation of
pomeron flux

pp scattering
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Nature of the fluctuations

Summary,

Impact parameter profile

W = 2000 GeV
Central collisions: 1 ' ' T

(t) large = 0.8
Fluctuations small

0.6

Peripheral collisions: 0.4
(t) small =
Fluctuations small

0.2

Largest fluctuations when (f) ~ 1 and (t) ~ 0.5

Circular ring expanding to larger radius at higher energy
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Summary.

Relation to Triple-Regge

Does the result describe the Regge formulae?

For the bare pomeron we have:
Ttot ~ ﬂgpp s¢

Oel ~ ﬂgpp 52¢

O0d.exc. ™~ ﬂgpp Jdprpp S

(with logarithmic corrections for o¢ and oy exc.)
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Summary.

1000

o (mb)

100

deg _+

slngledlsfg%%tlyﬁ +

wbalcwsss:(cuuplr} +
1

100 1000 10000
W (GeV)

Works well with ap(0) ~ 1.2

(Cf. Durham 1.3, Goulianos 1.11)
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Summary
» In the eikonal approximation diffractive excitation is directly
determined by the fluctuations in the scattering process.
» The fluctuations in the dipole cascade evolutions are large

» It reproduces the triple-pomeron results without new free
parameters. (The bare pomeron interceptis ap ~ 1.2.)

» It can describe the large diffractive cross section in DIS.

» In pp the fluctuations are large for the Born amplitudes, but
strongly suppressed by unitarity above ~ 20 GeV.

» Diffr. exc. in pp is an expanding ring in b-space.

Conclusion: The Dipole Cascade Model can describe diffractive
excitation in v*p and pp, to small and large masses, in a unified
formalism, without new parameters (besides those determined
by the total and elastic cross sections).

Fluctuations, Saturation, Diffraction 28 Gosta Gustafson Lund University
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Extra slides

Extra slides
Impact parameter profile

W = 2000 GeV W =20 GeV
1 T T T T 1 T T

0.8

0.6

0.4

0.2

0

10

As observed earlier, diffractive excitation is a peripheral process
Circular ring expanding to larger radius at higher energy.
Extrapolate to smaller energy =

The hole closed for W ~ 20 GeV. Agrees with Goulianos:
estimate!
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Diffractive final states

Coherence effects important for subtracting el. scatt.
don = cf (X di tam — (1))

(t) = 2 om €4 dF tam
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Toy model

(Abelian emissions; no saturation)

Vin = [Ii(ai + 54)|0)

parton i produced with prob. |32, interacts with weight f;
Diff. exc. states:

Vi = (=6 + aj) [T 4(ci + £)[0)

doer ~ (3 52fi)?

023242
doj ~ o232,
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pp scattering

() =1-(327)P " =1—(32)*" — 1when (f) »

a1
Vi = (5%5)Pt — (527)%*2 — 0 when (f) — oo

_a_
a+2
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