Saturation in DIPSY *F*₂ and *F_L* Conculsions

Christoffer Flensburg

Department of Theoretical Physics Lund University

DESY-Lund, Lund 26 Jan 2010

Work done with Gösta Gustafson and Leif Lönnblad.

Saturation in DIPSY *F*₂ and *F_L* Conculsions

Content

- Saturation in DIPSY
 - Swing
 - Multiple interactions
- Saturation in F₂ and F_L
 - x dependence.
 - Q² dependence.

Lund University

Saturation in DIPSY F₂ and F_L Conculsions The Swing Unitarisation Frame independence

Saturation

- Breaks the growth of the cross section to protect unitarity.
- Important in dense states.
- Nonlinear effect.
- Acts in evolution and in interaction.

Saturation in DIPSY F_2 and F_L Conculsions

The Swing Unitarisation Frame independence

The Swing

- Tends to swing large dipoles into small dipoles.
- Can be interpreted as quadrupole or gluon exchange.

F_L in DIPSY

4

Lund University

Saturation in DIPSY F_2 and F_L Conculsions

The Swing Unitarisation Frame independence

Saturation energy

Unitarisation

- Accounts for multiple interactions: total interaction probability is not the sum of the dipole interaction probabilities.
- ► Instead use non-interaction probability $1 e^{\sum f_{ij}}$.

 Saturation in DIPSY
 The Swing

 F2 and FL
 Unitarisation

 Conculsions
 Frame independence

These two cooperate to provide same saturation no matter which frame we collide in.

ation in DIPSY Saturated? *F*₂ and *F*_L As function Conculsions As function

*F*₂ and *F*_{*L*} saturated?

Depends mainly on the evolved rapidity, that is x.

- Proton can evolve around 3 units before saturating.
- $Q^2 = 14 GeV^2$ photon can evolve around 4.
- total around 7 units, ie x = 0.00091.
- Higher $Q^2 \Rightarrow$ quicker saturation.
- Very gradual transition.

A CONTRACTOR

Saturation in DIPSY F_2 and F_L Conculsions

Conclusions

- Saturation effects are present also at high Q²!
- Each incoming particle contribute with a number of saturation free units of rapidity.
- Very gradual transition.
- Differences in saturation energy for F_L and F_T at high Q²?

Lund University