Update on ALPIDE telescope data analysis

Oleksandr Borysov

LUXE meeting January 16, 2020

Outline

- Telescope planes alignment and track reconstruction performance;
 - 5 planes;
 - 3 planes;
 - 4 planes;

Setup 1

- Measure the effect of the air ~2 m.
- Collimator with 5 mm square cross section?

Data processing

- Data converter from raw format to LCIO
- Eutelescope software. It uses ILC software:
 - for geometry settings (GEAR)
 - Marlin (Modular Analysis and Reconstruction for the LINear Collider) for data processing;
 - LCIO for input/output;
 - Converting data to root format;
 - Alignment and track reconstruction.

Noisy pixels (default settings for threshold)

jobsub.noisypixel(INFO):
iobsub.noisypixel(INFO):

```
Run 49

| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 0 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 1 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 2 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 1 noisy pixels on sensor: 3 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 3 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 4 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 6 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 7 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 8 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 8 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 8 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sensor: 9 |
| jobsub.noisypixel(INFO): | MESSAGES | HotPixelMasker | Found 0 noisy pixels on sens
```

Run 60, Single track fit for all 5 planes

Run 60, Single track fit for all 5 planes

 Δy (mm)

Δy (mm)

Number of reconstructed tracks

- Number of reconstructed tracks: 284420;
- Number of events with at least one plane with 0 hits: 78640;
- 363708 78640 = 285068;
- 285068 284420 = 648 number of events without reconstructed track but with hits in all planes.

Number of hits per plane

363708

0.8904

0.4479

Number of hits per plane

- Seems to be too many events with many (4+) tracks reconstructed;
- Need to check it.

Angular distributions of the tracks

Hits assigned to tracks

All hits

Prealignment. Y correlations between planes

Prealignment of rotation around Z. Profiling plot of dy vs x distribution.

Track reconstruction in three planes after the magnet

Test with 4 planes: 1,2 and 3,5

Hits, run 60, magnet off

x position [mm]

Hits, run 49, magnet current 200A

Displacement in first plane after the magnet:

 $6.619 + 8.256 = 14.875 \, \text{mm}$

Summary

- Converter for ALPIDE raw data to LCIO works reasonably well.
- Noisy pixel analysis, clustering and hits reconstruction produces reasonable results.
- Alignment procedure converges reasonably well after good prealignment.
- Track reconstruction test for one run (run 60). Look reasonable, but some tuning of reconstruction algorithm parameters will be useful.
- Continue with other runs and analysis of scattering angle.

Back up

Least square fit of line to 3 points

(%o1) x0+d 1 x0+2 d 1

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

(%i2) Y: matrix([y0], [y1], [y2]); (%o2) $\begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$

(%i1) A: matrix([x0,1], [x0+d,1], [x0+2*d,1]);

Slope is determined by the two outer points

(%i3) B: ratsimp(invert(transpose(A) . A) . transpose(A) . Y); $\frac{y^2-y\theta}{2d}$ (%o3) $\left[-\frac{(-3x\theta-5d)y\theta-2dy1+(3x\theta+d)y2}{6d} \right]$

The distance to outer points is twice smaller than to middle one

Magnet and TB setup geometry

Upstream of the target

Upstream of the target

Downstream of the target

Downstream of the target

