Cerenkov Detectors Gas tightness tests

Ruth Jacobs Luxe Technical Meeting, 12th March 2020

What I showed you before

today, 09:41 1220 mmH20 ≈ 122 mbar

yesterday, 16:41 1400 mmH20 ≈ 140 mbar

This test was not sufficient to make a statement about gas-tightness!

Reason 1: The mechanical manometer does not give reliable reading Reason 2: Need to take external pressure & temperature changes into account

DESY.

What we do now

"Digital" pressure sensor attached to Cerenkov Box:

- monitor output (4-20 mA current for pressure range of 0-160 mbar) with Keithley 6514 Electrometer connected to serial port of PC
- precise pressure monitoring in real-time is possible!

Result:

Long-time monitoring in Hera West:

- fill setup to ~140mbar (using mechanical manometer) with Argon (+2.3% Isobutane)
- take pressure reading from digital sensor every 2 minutes over the weekend
- observe modulations in pressure

Modulation source 1: The weather

Cerenkov box is a barometer:

- digital sensor measures pressure difference inside/outside the box
- pressure outside going up → measured pressure difference going down

Correct:

- can extract pressure measurement from website for every hour (csv file)
- extrapolate linearly in between readings
- use to correct our measured pressure (additive)
- max difference between Billbrook & Finkenwerder 0.7mbar (~ Error)

Modulation source 2: Temperature in the lab

Measure for 54h over the weekend

Decrease in temperature then relatively stable. Could be effect of our body temperature or cooling down, so not super reliable.

Ideal Gas Law:

$$p \cdot V = Nk_BT \quad \stackrel{V = \text{const.}}{\longrightarrow} \quad \frac{p_1}{p_2} = \frac{T_1}{T_2}$$

DESY.

Corrected result:

 I wouldn't trust the temperature correction, but 1°C change in temperature corresponds to ~5mbar pressure change

It's safe to say our gas loss is < 0.1 mbar/h

This corresponds to 0.3 ml loss of Gas per hour for our whole 3 litre box.

Summary

1) Long-time pressure monitoring in Hera West:

- digital pressure sensor works now, can monitor the pressure in our detector in real time
- need to correct for external pressure variations and temperature
- from pressure logging: Our gas loss is < 0.1mbar/h

 \rightarrow Pressure logging: Gas volume loss < 0.3ml/h for the whole Cerenkov Box

2) Gas Leakage detection system (sniffer):

- TPC group has a highly sensitive gas leakage detector
- can measure differences between gas sample and surrounding air by measuring temperature conductance
- checked this during Argon fill at 140mbar over-pressure fill

 \rightarrow We checked all values, gaps, and openings around the box, not a single leak was detected!

I think its valid to state that the Cerenkov Prototype is gas tight!