Gamma Monitor using backscatters

Borysova Maryna (KINR) LUXE technical meeting DESY Hamburg

9/04/20

The implementation of FDS in Luxe geometry with the LG Gamma Monitor made of new LG blocks in front of Al-Cu Dump,
LG w/ measures 3.8 × 3.8 cm², length is 45 cm
Wrapped with Aluminium foil of 0.016 mm (typical household foil; no account for air)

Reduced the size of the beam pipe to be consistent with the blocks size and to be able to monitor the area close to the beam pipe.

Energy deposition in layers, 48 LG blocks

Energy deposition, 48 vs 32 LG blocks

Deposited energy versus true number of photons.

Each point is one BX

Track density, 48, $\xi = 2.6 \text{ vs} \xi = 0.26$

Track density on the surface of LG blocks in XY plane

Energy deposit, 48, $\xi = 2.6 vs \xi = 0.26$

Gamma monitor studies:

***** New, irradiated LG block are found and could be wrapped and used for GM. ***** The implementation of two different configurations in Luxe geometry ***** run the simulation with new geometry implementation for $\xi = 0.26 \& \xi = 2.6$; 100 BX

Further studies: To implement optical physics in simulation

Lead glass blocks found in Hera West

*****New TF-1 LG blocks! Not irradiated, w/ measures 3.8×3.8 cm², length is 45 cm , ~50 *****Will give the possibility to determine precisely coordinates and energies

 Spare modules for GAMS found in Hera West thanks to Sergey Schuwalow
 There is a preliminary agreement to move it to the LUXE Lab

Chemical Composition of

TF_1IG

Table 1. Chemical composition and physical properties of the TF-1^[10].

Chemical composition (weight %)		Fractions atomic units
PbO	51.2	Pb-0.082232
SiO ₂	41.3	Si-0.246406
K ₂ O	3.5	0-0.608358
Na ₂ O	3.5	K-0.038057
As ₂ O ₃	0.5	NA-0.023135
Radiation length (cm)	2.50	AS-0.001812
Density (g/cm ³)	3.86	
Critical energy (MeV)	15.57	
Refraction index	1.6476	

Used previously in GAMS-2000 spectrometer (Serpuchov) GAMS-4000 spectrometer (NA-12 experiment, CERN)

The measured energy resolution of the GAMS-4000 spectrometer for a single photon is $\sigma_{\rm E}/{\rm E}$ = 0.011 + 0.053 / $\sqrt{\rm E(GeV)}$.

* The implementation in Luxe geometry of the LG Gamma Monitor made of 32 new LG blocks in front of Al-Cu Dump(R(Cu) = 13.0 *cm; R(Al) = 6.5 *cm & L(Al)= 20 *cm)

★ 32 LG w/ measures 3.8 × 3.8 cm², length is 45 cm
★ Each block is wrapped with Aluminium foil of 1 mm

7

Simulation and Performance

The distribution of particles tracks entering LG Gamma monitor in XY and XZ planes

The dependence of deposited energy on number of incoming photons per BX for LG Gamma monitor and AICu dump

