
ML Enhanced Orbit 

Correction in Particle 

Accelerators 

Andrei Ivanov 

Hamburg, 03.02.2020 



Overwiew 

01 Problem Formulation 

• Lattice imperfection and orbit correction 

• Traditional methods 

 

 

02 ML-based orbit correction 

• Taylor maps for ODEs 

• From Taylor maps to neural networks 

• Regularization when learning dynamics with small datasets 

 

 

03 Next steps 

| Machine Learning for PETRA IV | Andrei Ivanov, 03.02.2020 2 



Problem Formulation 

The part of the PETRA IV lattice is used in simulation: 

34 magnets (166 elements), 11 beam position monitors and 10 

corrector magnets 

 

OCELOT framework is used for the dynamics simulation 

 

To simulate lattice imperfection, the random misalignments of 

magnets are generated 
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Particles moves along centers by design 
but the actual orbit has deviations because of lattice imperfections 
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Traditional methods in orbit correction 
Coordinate descent or SVD 
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where xi is beam coordinate measured 

at i-th monitor, cj is the strength of j-th 

corrector magnet. 
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SVD for pseudoinverse 
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The limitations of the traditional methods 
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1. Coordinate descent is time-consuming procedure, may lead to local 

bumps in orbit, requires expertise 

 

2. SVD assumes linear dependencies between correctors and BPMs 

The main goal is to develop ML-based models that improve existing solutions 
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ML Enhanced Orbit 

Correction 
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ML methods are data-driven approaches for 
recovering dynamics with misalignments from limited observations 
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ML model 
limited amount 

of observations 
optimal control 
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1. A naive method is to parametrize equations of motion and tune 

parameters 

 

 

 

 

 

ML methods are data-driven approaches for 
recovering dynamics with misalignments from limited observations 
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2. Another solution is replacement of real data with simulated and training 

predictive models (RL-agents) 
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1. A naive method is to parametrize equations of motion and tune 

parameters 

 

 

 

 

 

2. Another solution is replacement of real data with simulated and training 

predictive models (RL-agents) 

 

 

 

 

3. Our approach is combination of ODE-based dynamics and data-

driven fitting with small data   

ML methods are data-driven approaches for 
recovering dynamics with misalignments from limited observations 
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Taylor maps for ODEs 
Instead of numerical solving of differential equations one can use maps 
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Example: equation of motion in a bending element 

step-by-step integration 

(Runge-Kutta solvers) 

requires ~ 30 steps  
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particle coordinates at the end 
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From Taylor maps to Neural Networks 
Taylor map as a polynomial neuron 
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Instead of tuning ODEs one can fit weights directly 
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From Taylor maps to Neural Networks 
Taylor map as a polynomial neuron 
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… 

Instead of tuning ODEs one can fit weights directly 
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Regularization 
Standart L1 or L2 regularization terms don’t work 
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Since the Taylor maps consist of weights that are varied by several order of 

magnitudes, it makes impossible to use L1L2 regularization. It attempts to 

simply reduce weights magnitude norm(Wi). 
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Symplectic regularization 
preserves physical properties of trained model 
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Symplecticity is the property of the Hamiltonian systems 

 

 

 

that can be written in form of 

For example, for the second-order Taylor map it results 
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Symplectic regularization 
preserves physical properties of trained model 
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Example: mathematical pendulum 

Model: second-order Taylor map: 
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Symplectic regularization 
preserves physical properties of trained model 
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Example: mathematical pendulum 

Model: second-order Taylor map: 

Training without symplectic regularization 
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Symplectic regularization 
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Example: mathematical pendulum 

Model: second-order Taylor map: 

Training with symplectic regularization 
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Example: mathematical pendulum 

Model: second-order Taylor map: 

Training with symplectic regularization 

| Machine Learning for PETRA IV | Andrei Ivanov, 03.02.2020 



Training  
with limited observation 
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1. Use mapping to initialize weights of polynomial NN. We extracted weights 

from OCELOT framework. 

 

 

 

 

 

 

2. After Step 1 the constructed NN has 166 layers and accurately represents 

particle dynamics in the ideal lattice without misalignments 
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Training  
with limited observation 
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3. Generate training data (simulation of 

dynamics with random generated 

misalignments) 

 

 

4. Define 11 outputs of the NN where 

BPMs are located and fit all 166 

layers with symplectic regularization 

 

 

 

 

5. After training, the NN recovers 

imperfect dynamics in lattice 
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Optimal control 
trained NN can be used for both optimal control and simulation 
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SVD-based orbit correction 

 

Only linear dependency 

between correctors and BPMs 

NN-based orbit correction 

 

Nonlinear dynamics along 

complete lattice 

6. Since the trained NN preserves physical properties 

- Initialize weights from ODEs 

- Symplectic regularization 

 

the model can be used for solving optimal control problems by varying 

parameters 
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Recovering of nonlinear dynamics 
trained NN can be used for both optimal control and simulation 
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Lattice with known 

misalignments 

Trained model 



Results 
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European Conference on Artificial Intelligence 

Ivanov, A. et al. Polynomial Neural Networks and Taylor maps for Dynamical 

Systems Simulation and Learning (Full-paper, oral presentation) 

Taylor map-based NN tuning along with the symplectic regularization 

allows to recover dynamics with limited observations 

 

Various application: orbit and optics correction, optimizers 
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Next steps 

in terms of data acquisition and interfaces to be able to introduce 

implemented models into existing control environment 

 

Ocelot Gym 

OCELOT:  open source project for beam dynamics simulation of the 

whole machine in modern electron-based x-ray sources  

 

Gym environment + RL 

Work with real data 
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