Generative Models For High Granularity Calorimeters

Machine Learning for Jets Workshop, New York University

Erik Buhmann, Sascha Diefenbacher, <u>Engin Eren</u>, Frank Gaede, Gregor Kasieczka, Anatoli Korol, Katja Krüger

15.01.2020

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Calorimeters in a HEP Experiment

- Incoming particle initiates the showers and **secondary particles** are produced
- These secondary particles further produce other particles until the full energy is absorbed

One type of EM calorimeter: sampling calorimeter

- Alternating layers of passive absorbers and active detectors
- Only **fraction** of particle energy is recorded (visible energy)

High Granularity Calorimeter

Very fine segmentation of channels

- Reconstruct all individual particle showers
- Optimised for Particle Flow Approach (PFA)
 - ✓ Improve overall precision

Examples:

- ILD detector at ILC (Higgs Factory):
 - * Si-W ECAL (5x5mm) + Scintillator-Steel HCAL (30x30mm)
- CMS High Granularity Calorimeter (HGCAL)

Shower Simulation

- Particle showers in the calorimeter are simulated by Geant4
 ✓ First-principle **physics** based simulation
- Very CPU intensive, due to large number of interacting particles

Goal:

- Reproduce accurate shower simulations with a faster, powerful generator; based on state-of-the-art generative models
- Enormous amounts of CPU time could be potentially saved!

Figure from D.Costanzo, J.Catmore, LHCC meeting

CALOGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

Michela Paganini, Luke de Oliveira, and Benjamin Nachman Phys. Rev. D **97**, 014021 – Published 30 January 2018

Simulator	Hardware	Batch size	ms/shower
Geant4	CPU	N/A	1772
CaloGAN		1	13.1
	CPU	10	5.11
		128	2.19
		1024	2.03
		1	14.5
		4	3.68
	GPU	128	0.021
		512	0.014
		1024	0.012 ¥

Training Data

Geant4 Simulation

- Shooting photon perpendicular to the ILD-ECAL (Si-W)
 - Constant incident point
 - 85.000 photon showers
 - Photon Energy: 10-100 GeV, continuous!
 - 30x30x30 pixels, centered on beam

30x30x30 data (3D)

Challenges

Quality measures:

- Reproduce Geant4 showers
- <u>Shower shape variables have to be examined, especially:</u>
 - Number of hits (i.e occupancy)
 - Radial & longitudinal profile
- Differential energy distributions: shape & accuracy

Energy conditioning

- Condition generator / decoder on incoming particle's energy
 - Not same as visible (or reconstructed) energy!

Generative Model: Wasserstein GAN

Wasserstein GAN (Gradient-Penalty)

An alternative to traditional GAN training. Helps improve the stability of learning

- Label conditioning: Provide information on shower we are simulating (energy of incoming photons)
- Add loss term to the generator to reconstruct energy of generated showers.

 $\tilde{x} = g_{\theta}(z, y_{\text{label}})$

Wasserstein GAN (2D Data)

20

10

10²

 10^{1}

 10^{0}

W-GAN shower 50 GeV

0

50 GeV Photons

GEANT 4

Trained only on 50 GeV

- (No energy-conditioning) •
- Very good agreement with G4!

WGAN-GP (2D Data)

0.30

normalized

Trained on full spectrum

WGAN-GP (2D Data)

- Great linearity
- Energy shape broken

Generative Model: BIB-AE

Variational Autoencoder

- MSE for reconstruction
- KLD for individual latent distr. shape

Variational Autoencoder

- MSE for reconstruction
- KLD for individual latent distr. shape
- Latent critic for global latent distr. shape

Variational Autoencoder

- MSE for reconstruction
- KLD for individual latent distr. shape
- Latent critic for global latent distr. shape
- MSE problematic for sparse images
- Critic network

BIB-AE CS-paper: arXiv:1912.00830

Input Sampling **Bounded Information Bottleneck Autoencoder** MSE for reconstruction Х Ζ Encoder σ • KLD for individual latent distr. shape • Latent critic for global latent distr. shape KLD Latent- MSE problematic for sparse images Critic +MMD $\mathcal{N}(0,1)$ Critic network

- Information in Latent space needs
 reconstruction
- → Difference Critic

Bib-AE (3D Data)

Bib-AE (3D Data)

Best results so far

- Overall good agreement with G4!
 - Except for Sparcity and lower cell energies

Bib-AE (3D Data)

Energy conditioning

0.30

0.25

0.20

0.15

0.10

0.05

0.00

500

normalized

- Tested on different energies: Working \checkmark

60 GeV Photons

1500

2000

- GEANT 4

— BiBAE

1000

energy sum [MeV]

Conclusion

- High granularity calorimeters will play key role for future experiments
- Application of generative models to high resolution EM Shower Simulation
- Architectures:
 - WGAN (2D)
 - Bib-AE (3D) (**New!**)
- Goals:
 - Shower shapes
 - Energy distribution
 - Conditioning

Thank you

Backup Slides

VAE-GAN (2D Data) 0.30 Best results so far 0.25

Overall good agreement :

- energy shape and sparsity are not optimal
- Radial energy is in a very good agreement

24

Challenges

Distance between eyes ?

Length of a nose ?

NVIDIA paper : <u>arXiv:1710.10196</u>

Similarity measures via MSE Loss:

- Is a simple element-wise metric
- Might not be suitable for image data.

Instead of MSE Loss in the VAE:

• Use adversarial network

Adversarial critic :

- Wasserstein critic!
- Does not perform reconstruction
- No information in latent space

