Growth of Boson star

Presented by: Jiajun Chen

Advisor: Prof. Dr. Jens niemeyer

Co-advisor: Prof. Dr.David Marsch, Dr.Lentz Erik

Georg-August-Universität Göttingen, Faculty of Physics, Institute of Astrophysics

Background

- Condensation of Boson star in minicluster
- Theoretical prediction of Boson stars' saturation in axion minicluster
- The negligible effect of self interaction in the condensation of boson star

Condensation of Boson star in minicluster

Axion miniclusters form

Boson stars will occur and grow in this axion miniclusters $\frac{1}{2}$ 999 $\frac{1}{3/12}$

Theory of Boson stars' saturation

- lacktriangleright mass growth of boson star at early stage $\sim t^{1/2}$
- lacktriangle temperature of atmosphere surrounding boson star \sim viral temperature of boson star
- ightharpoonup growth rate drop to $\sim t^{1/8}$

Simulation of Boson stars' saturation in axion miniclusters

Transaction from $\sim t^{1/2}$ to $\sim t^{1/8}$

Transaction is universal

Axion with self interaction

► Gross-Pitaevskii-possion(GPP) equations:

$$i\frac{\partial}{\partial t}\psi = -\frac{1}{2m}\nabla^2\psi + mV\psi + g|\psi|^2\psi, \nabla^2V = 4\pi Gm\left(|\psi|^2 - n\right)$$

► Gross-Pitaevskii (GP) equations:

$$i\frac{\partial}{\partial t}\psi = -\frac{1}{2m}\nabla^2\psi + g|\psi|^2\psi$$

$$ightharpoonup \widetilde{g} = g(M_{pl}v_0)^2$$

Theory of self interaction's effect

$$Z = rac{ au_{gravity}}{ au_{self}} \sim rac{\sigma_{self}}{\sigma_{gravity}} \sim rac{g^2 v^4}{16\pi^2 G^2 Log(mvL)}$$

► QCD axion in miniclusters:

$$v \sim 10^{-9}$$
, $g \sim (-10^{-7} M_{pl})^{-1}$

► Fuzzy axions in dwarfs:

$$v \sim 10^{-4}$$
, $g \sim (-10^{-1} M_{pl})^{-1}$

 $z \ll 1 \rightarrow \mathsf{self}$ interaction is negligible

Simulation with GPP equations

Similar process of minicluster's formation and boson star's condensation

Similar maximum density evolution at the early stage but rapid growth at the end stage

Powerful attractive self interaction

Simulating GPP equations and GP equations with $\widetilde{g}=-1.0$.

Powerful attractive self interaction

Simulating GPP equations and GP equations with $\tilde{g} = -80.0$.

Opposite self interaction

Opposite self interaction

