

Growth and Evaporation of Axion Soliton

James Chan EPFL-LASTRO/CERN

2020 July 21 @ FDM Workshop

Collaborators: Sergey Sibiryakov, Wei Xue

Motivation

- How a soliton lives in a halo?
- core-halo mass relation $M_{\rm c} \propto M_{\rm h}^{-1/3}$?
- grow? evaporate? how fast?
- BEC in the kinetic regime (Levkov et al. 2018)

To long to wait

put a **soliton** in a **gas** field

Equation

• Schrödinger equation

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + m\Phi\psi$$

Poisson equation

$$\nabla^2 \Phi = 4\pi G\rho$$
$$\rho = m |\psi|^2$$

- ψ = wave function
- m = particle mass
- $\Phi =$ self-gravitational potential
- ho = the mass density
- spectral method with a uniform mesh
- drift-kick-drift scheme
- GPU

Soliton

 $= 337.387 \cdot r_{\rm c}^{-4}$ Schive et al. 2014 half-peak radius: $r_{1/2} \sim 0.3 r_{\rm c}$

Background Gas:
halo size
$$\gg$$
 de Broglie wavelength
 $(mvR \gg 1)$

$$\psi(\mathbf{r}) = \sqrt{\frac{1}{V} \sum_{\mathbf{k}} \psi_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}}$$

Gaussian distribution:
$$|\psi_{\mathbf{k}}|^2 = Ae^{-\frac{k^2}{k_0^2}}$$
 $V = N^3$ $\bar{\rho} = \frac{Ak_0^3}{8\pi^{3/2}}$

N: resolution, box sizek₀: temperature, velocity of gasA: number of particles

Khlebnikov 1999, Levkov et al. 2018

All solitons grow?

Average Growth/Evaporation Rate

 f_1 : gas in bound state f_2, f_3 : gas a: axion soliton

$$\langle \delta N_s \rangle = \frac{1}{2} \sum_{1,2,3} \left(f_1 f_2 (1+f_3) - (1+f_1)(1+f_2) f_3 \right) |M_{1s,23} + M_{2s,13}|^2$$

evaporation
$$\simeq \frac{1}{2} \sum_{1,2,3} \left(f_1 f_2 - f_1 f_3 - f_2 f_3 \right) |M_{1s,23} + M_{2s,13}|^2$$

hot gas: $k_0 \cdot r_{1/2} \gg 1$

[Chan, Sibiryakov, and Xue in prep.]

Fitting function: $M_{\rm c}(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2$

Formation of soliton in the kinetic regime

$$N = 128, k_0 = 0.5, A = 0.02$$

$N = 128, k_0 = 0.5, A = 0.02$

Result

- transition at $k_0 \cdot r_{1/2} \sim 3$
 - + $k_0 \cdot r_{1/2} < 3$: soliton grows
 - $k_0 \cdot r_{1/2} > 3$: soliton evaporates
- \cdot growth rate decreases when gas/soliton becomes cooler/heavier ($k_0 \cdot r_{1/2} \searrow$)
- evaporation rate increases when gas/soliton besoms hotter/lighter ($k_0 \cdot r_{1/2} \nearrow$) [theoretical calculation matches]
- soliton formation in the kinetic regime:
 - We confirm the expression for the condensation time (Levkov et al. 2018).
 - We find a different growth rate (slower).
 - gas reappears as Maxwellian-like distribution when a soliton becomes massive.