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Rich evidence for dark matter - from its gravitational effects

Dynamical measurements.

Gravitational lensing measurements.

Hoekstra, Yee, Gladders
Growth of perturbations.
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Outline

Particle physics motivations

Astrophysical implications (ultra-light DM)

Experimental implications (light DM)

1/mv ⇠ 10�3 cm for m = 10 eV

104 cm for m = 10�6 eV

100 pc for m = 10�22 eV Fuzzy DM (Hu, Barkana, Gruzinov)
QCD axion

Wave dynamics and phenomenology



Particle physics motivations

A natural candidate for a light (scalar) particle is a pseudo-Nambu-Goldstone boson.

�

The most well motivated example is the QCD axion, which solves the strong CP problem.

(Peccei, Quinn; Weinberg; Wilczek; Kim; Shifman, Vainshtein, Zakharov, Zhitnitsky; Dine, 
Fischler, Srednicki; Preskill, Wise, Wilczek; Abbott, Sikivie)

There are also plenty of axion-like-particles (ALP) in string theory, from compactification.

(Svrcek, Witten; Arvanitaki, Dubovsky et al.; Bachlechner, Eckerle, Janssen, Kleban)

See review by Marsh.



Ultra -light version

m ⇠ ⇤2/F

Relic abundance matches dark matter abundance.

(Preskill, Wise, Wilczek; Abbot, Sikivie; Dine, Fischler, with constant m)

L ⇥ �1

2
(⇥�)2 � �4(1� cos [�/F ])

Consider  an angular field (a pseudo Nambu-Goldstone) of periodicity            i.e. an 
axion-like field  with a potential from non-perturbative effects (not QCD axion).

2�F

� ⇠ F at early times until H ⇠ m
V (�)

2�F

Fuzzy dark matter (FDM) 
Hu, Barkana, Gruzinov 
Amendola, Barbieri

(candidates: Arvanitaki et al. 
                          Svrcek, Witten)

⌦matter ⇠ 0.1

✓
F

1017 GeV

◆2 ⇣ m

10�22 eV

⌘1/2

mass m  10�22 eV!
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mass conservation 

Euler equation

superfluid  
(see also Berezhiani, Khoury) 

Dynamics of wave dark matter:
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21–4The meaning of the wave function

When Schrödinger first discovered his equation he discovered the conservation law of Eq. (21.8) as a consequence of his
equation. But he imagined incorrectly that  was the electric charge density of the electron and that  was the electric
current density, so he thought that the electrons interacted with the electromagnetic field through these charges and
currents. When he solved his equations for the hydrogen atom and calculated , he wasn’t calculating the probability of
anything—there were no amplitudes at that time—the interpretation was completely different. The atomic nucleus was
stationary but there were currents moving around; the charges  and currents  would generate electromagnetic fields
and the thing would radiate light. He soon found on doing a number of problems that it didn’t work out quite right. It was
at this point that Born made an essential contribution to our ideas regarding quantum mechanics. It was Born who
correctly (as far as we know) interpreted the  of the Schrödinger equation in terms of a probability amplitude—that very
difficult idea that the square of the amplitude is not the charge density but is only the probability per unit volume of
finding an electron there, and that when you do find the electron some place the entire charge is there. That whole idea is
due to Born.

The wave function  for an electron in an atom does not, then, describe a smeared-out electron with a smooth charge
density. The electron is either here, or there, or somewhere else, but wherever it is, it is a point charge. On the other hand,
think of a situation in which there are an enormous number of particles in exactly the same state, a very large number of
them with exactly the same wave function. Then what? One of them is here and one of them is there, and the probability
of finding any one of them at a given place is proportional to . But since there are so many particles, if I look in any
volume  I will generally find a number close to . So in a situation in which  is the wave function
for each of an enormous number of particles which are all in the same state,  can be interpreted as the density of
particles. If, under these circumstances, each particle carries the same charge , we can, in fact, go further and interpret 

 as the density of electricity. Normally,  is given the dimensions of a probability density, then  should be
multiplied by  to give the dimensions of a charge density. For our present purposes we can put this constant factor into 

, and take  itself as the electric charge density. With this understanding,  (the current of probability I have
calculated) becomes directly the electric current density.

So in the situation in which we can have very many particles in exactly the same state, there is possible a new physical
interpretation of the wave functions. The charge density and the electric current can be calculated directly from the wave
functions and the wave functions take on a physical meaning which extends into classical, macroscopic situations.

Something similar can happen with neutral particles. When we have the wave function of a single photon, it is the
amplitude to find a photon somewhere. Although we haven’t ever written it down there is an equation for the photon
wave function analogous to the Schrödinger equation for the electron. The photon equation is just the same as Maxwell’s
equations for the electromagnetic field, and the wave function is the same as the vector potential . The wave function
turns out to be just the vector potential. The quantum physics is the same thing as the classical physics because photons
are noninteracting Bose particles and many of them can be in the same state—as you know, they like to be in the same
state. The moment that you have billions in the same state (that is, in the same electromagnetic wave), you can measure
the wave function, which is the vector potential, directly. Of course, it worked historically the other way. The first
observations were on situations with many photons in the same state, and so we were able to discover the correct equation
for a single photon by observing directly with our hands on a macroscopic level the nature of wave function.

Now the trouble with the electron is that you cannot put more than one in the same state. Therefore, it was long believed
that the wave function of the Schrödinger equation would never have a macroscopic representation analogous to the
macroscopic representation of the amplitude for photons. On the other hand, it is now realized that the phenomena of
superconductivity presents us with just this situation.

21–5Superconductivity

As you know, very many metals become superconducting below a certain temperature9—the temperature is different for
different metals. When you reduce the temperature sufficiently the metals conduct electricity without any resistance. This
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Li, LH, Bryan

Wave effects in a cosmological simulation

See Schive, Chiueh, Broadhurst; Veltmaat, Niemeyer; Schwabe, 
Niemeyer, Engels; Mocz et al.; Nori, Baldi; Kendall, Easther
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- dynamical friction

- evaporation of sub-halos by tunneling

- interference

- Lyman-alpha forest

- tidal streams and gravitational lensing

- direct detection

- detection by pulsar timing array

- vortices (and walls)

- black hole hair

Wave effects from light/ultra-light DM:



Vortices

Consider again fluid formulation:

v̇ + v ·⇤v = �⇤�grav. +
1

2m2
⇤
✓⇤2⇥�

⇥
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◆

Naively, vorticity cannot exist, because the velocity field is a gradient flow.  
In addition, one might think Kelvin’s theorem should hold i.e. no vorticity is 
generated if there’s no vorticity to begin with.
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The loophole:   where              . ⇢ = 0



A simpler example first: a wall defect in 1D
Consider         in one spatial dimension. Suppose it vanishes at some point, say  x=0. 
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Consider         in one spatial dimension. Suppose it vanishes at some point, say  x=0. 
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Argument generalizes to higher dimensions. In 3D, vanishing of both real & imaginary parts 
implies intersection of 2 surfaces i.e. a line/string defect -> vortex.

Vortex

phase wraps by        (or          ) 2⇡ 2⇡n
I

~v · d~̀= 2⇡n/m

 (~x) ⇠  (0) + ~x · ~@ 
��
0
+ ...

⇢ / r2n & v / 1/r

Note: this is not the usual axion string.
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i @t = �r2

2m
 

 = x+ iy

 = x2 + y2 �R2 + 2i(�Rz + t/m)

 = x2 + y2 + z2 �R2 + i(�2Rz + 3t/m)

 = (x+ iy)(y + iz)� t/m

Simple solutions of the free equation: 



Ring’s direction of motion

Velocity circulation
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A 2D example built from a superposition of waves with random phases





Additional comments:

Minimal connection with angular momentum - vortices exist without net rotation 
of the halo; having angular momentum also does not by itself imply existence 
of vortices (i.e. can always superimpose s-wave with others).

Should defects be rare?   No - roughly one vortex ring per de Broglie volume.
Can compute this analytically for a model halo composing of a superposition 
of waves with random phases: essentially looking for zero-crossing.

Smaller rings move faster:                      . Curved segments also move faster.v ⇠ 1

mR
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Probability distribution of          from simulation and from analytic random phase model      | |

(see also Centers et al.)
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Observational signatures (for ultralight DM):

10�4 arcsecGravitational lensing by a vortex can lead to                           displacement of distant 
sources in                     . (Mishra-Sharma, Van Tilburg, Weiner)

In lensing events with extreme magnification (> 100), interference substructure 
can lead to fluctuations at the 10 percent level.

Dai et al.: strongly lensed arc 

Heating of tidal streams. (See Amorisco, Loeb; Ana Bonaca’s talk)

105 years

critical line

(See also: Dalal, Kochanek; Alexander et al.; Chan et al.; Broadhurst et al.)



Image of central region in M87 from the Event Horizon Telescope

A second topic: BH + scalar DM



Black hole hair from oscillating scalar

An example: violate the vanishing boundary condition at infinity.  
Jacobson (1999) showed that assuming                  far away for a massless scalar 
is sufficient to endow black hole with hair. The scalar charge is proportional 
to the time derivative, which is small for a cosmologically evolving scalar. 
(See also Horbatsch & Burgess.)

- This can be generalized to an oscillatory time dependence, such as in the 
context of a black hole surrounded by dark matter consisting of an oscillating 
scalar (with non-zero mass).                                                                                              
Or a more mundane description: a stationary accretion flow of dark matter. 

- Note: this is distinct from super-radiance.

- Bekenstein’s no (scalar) hair theorem can be violated in several ways:  

� / t



r⇤ = r + ln (r � 1) (rSchwarz. = 1)

(�⇤+m2)� = 0 in Schwarz. bgd.

similar pile� up occurs for m > 10�3 r�1
Schwarz.

m = 1/rSchwarz.



Figure 4: Two massive real scalar fields (left: m = 1

5
, right: m = 1 ) in a pure Schwarzschild

geometry (rs = 1), showing � as a function of t and r⇤ where r⇤ is the tortoise coordinate.
The color scheme shows the scalar field amplitude with the largest positive value as deep
blue and the most negative value as deep red. One can see that the scalar field oscillates
with a larger amplitude closer to the horizon. At r⇤ > 0, a heavy scalar (regime IV) is purely
ingoing due to the vanishing barrier in the potential. At r⇤ > 0, the lighter scalar (regime
III) has both ingoing and outgoing waves of comparable amplitudes, hence the standing wave
pattern with a node at r⇤ ⇠ 90. For r⇤ < 0, the potential barrier almost vanishes therefore
� becomes purely ingoing plane wave with the speed of light. (We have e↵ectively chosen
ri ⇠ 200 in these illustrations.)

Figure 5: This shows the time-averaged h�
2
i as a function of the tortoise coordinate r⇤ in

a Schwarzchild geometry with rs = 1. The curves are all normalized to unity at r⇤ = 400 i.e.
ri is e↵ectively chosen to be ⇠ 400. The masses of 1, 1/5 and 1/20 roughly span regimes IV,
III and II.

– 12 –



Additional comments:

Different scalar profile depending on scalar mass in relation to horizon size.

Gravitational backreaction is negligible. 

Self-interaction (for an axion) might be interesting? - (�/F )2 ⇠ 10�7 � 10�3

Kerr? Orbital angular momentum?

See Clough, Ferreira, Lagos.



Experimental implications (light DM e.g. QCD axion):
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Phase of oscillation might be interesting:                                              .� ⇠ | | cos(mt� ✓)
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Recent developments in light scalar dark matter

Vortices in superfluid DM  
  - with Austin Joyce, Xinyu Li, Michael Landry

Black hole scalar hair 
  - with Dan Kabat, Xinyu Li, Luca Santoni, Sam Wong
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Figure thanks to Vid Irsic and Matteo Viel

Importance of ionizing background and reionization history fluctuations?


