Cold birth and bright death of Bose stars

Dmitry Levkov (INR RAS & ITMP MSU)

Fuzzy Dark Matter Workshop 2020 Your computer, 20/07/2020

DL, A.G. Panin, I.I. Tkachev, arXiv:1804.05857

arXiv:2004.05179

Light bosonic (ALP) dark matter

- Fits into the galaxy:
 - $(mv)^{-1} \lesssim R \Rightarrow m \gtrsim 10^{-22} \, \mathrm{eV}$
 in kinetic regime
- Can be only bosonic:

$$f \sim rac{
ho/m}{(m v)^3} \gtrsim 1 \Rightarrow egin{array}{c} m \lesssim 10^2 \, {
m eV} \ \gg {
m for \ classical \ field} \end{array}$$

• Forms BE condensate:

 $(mv)^{-1} > n^{-1/3} \qquad \Rightarrow \boxed{m \lesssim 10^2 \text{ eV}}$

 $(Fuzzy DM) \\ 10^{-22} eV \\ \underbrace{10^2 eV}_{\text{Interaction}} \rightarrow \text{Bose condensation!} m$

Fornax dwarf galaxy

parameters are known!

$$ho \sim 0.1 \, M_\odot/{
m pc}^3$$

 $R \sim {
m kpc}$
 $v \sim 10 \ {
m km/s}$

Do they interact strongly enough?

Answer: YES, gravitationally!

Describing light DM

1 $f \gg 1 \Rightarrow$ classical field a(t, x)

$$\Box \mathbf{a} + m^2 \mathbf{a} - m^2 \mathbf{a}^3 / 6f_a^2 + \ldots = 0$$

self-interaction

2 $v \ll 1 \Rightarrow$ nonrelativistic axions $E_a \approx m$

• Newtonian gravity: $U(t, \mathbf{x}) \ll 1$

$$\Delta U = 4\pi G m^2 f_a^2 |\psi|^2$$

Scrödinger-Poisson system: $\psi(t, \mathbf{x}), \ U(t, \mathbf{x})$

Bose stars

Stationary solutions of SP system

•
$$\psi = \psi_{s}(\mathbf{r}) e^{-i\omega_{s}t}$$

Ground state of L

•
$$U = U_s(r)$$
 — potential of ψ_s

•
$$\omega_s < 0$$
 — binding energy

•
$$\textit{M}=\textit{M}(\omega_{s})$$
 — only parameter

Ruffini, Bonazolla '69; Tkachev '86

Properties:

1 Bose star = BE condensate in state $\psi_s(\mathbf{r})$

$\begin{array}{|c|c|c|} \hline \bullet & \text{Attractive self-interaction:} & -g_4^2 < 0 \\ \text{Large mass:} & M > M_{cr} = 10 \ f_a M_{pl} / mg_4 \end{array} \end{array} \right\} \Rightarrow \text{collapse}$

Brute-force simulation

FDM, 20/07/2020 5/22

Many simulations:

• Fuzzy DM in dwarf galaxies, $m \sim 10^{-22} \, {\rm eV}$

Schive et al '14; Veltmaat et al '18

• QCD axions in miniclusters, $m\sim 10^{-5}\,{
m eV}$

Eggemeier, Niemeyer '19

What is wrong?

- Hard to simulate: $mvR \gg 1$
- 2 No analytic estimates!
- 3 No prediction for $f_p(x)$

<u>Solution</u>: Kinetic description at $mvR \gg 1$

Kinetic equation: Derivation

Levkov, Panin, Tkachev '18

- Occupation numbers \leftrightarrow Wigner distribution $f_{\mathbf{p}}(t, x) = \int d^3 \mathbf{y} e^{-i\mathbf{p}\mathbf{y}} \langle \psi(\mathbf{x} + \mathbf{y}/2)\psi^*(\mathbf{x} - \mathbf{y}/2) \rangle$
- SP system: $i\partial_t \psi = -\not{\Delta}\psi/2\pi + \underbrace{U\psi}_{G\psi} \leftarrow \text{short notations}$
- Perturbative approximation
- **(** Expand in $(px)^{-1} \ll 1 \Rightarrow$ Local equation for $f \propto \langle \psi^* \psi
 angle$
- Solution Interaction at $p^{-1} \ll |x x'| \ll R$ Landau approximation

Kinetic equation: Derivation

Levkov, Panin, Tkachev '18

- Occupation numbers \leftrightarrow Wigner distribution $f_{\mathbf{p}}(t, x) = \int d^3 \mathbf{y} e^{-i\mathbf{p}\mathbf{y}} \langle \psi(\mathbf{x} + \mathbf{y}/2)\psi^*(\mathbf{x} - \mathbf{y}/2) \rangle$
- Spoolyubov chain of equations
 SP system: $i\partial_t \psi = \psi + G\psi\psi^*\psi \leftarrow \text{short notations}$ Infinite chain: $\partial_t \langle \psi^* \psi \rangle = \langle \psi^* \psi \rangle + G \langle \psi^* \psi \psi^* \psi \rangle$ $\partial_t \langle \psi^* \psi \psi^* \psi \rangle = \langle \psi^* \psi \psi^* \psi \rangle + G \langle \psi^* \psi \psi^* \psi \psi^* \psi \rangle$...
- Perturbative approximation
- **(** Expand in $(px)^{-1} \ll 1 \Rightarrow$ Local equation for $f \propto \langle \psi^* \psi \rangle$
- **1** Interaction at $p^{-1} \ll |x x'| \ll R$ Landau approximation

Kinetic equation: Derivation

Levkov, Panin, Tkachev '18

• Occupation numbers
$$\leftrightarrow$$
 Wigner distribution
 $f_{\mathbf{p}}(t,x) = \int d^3 \mathbf{y} e^{-i\mathbf{p}\mathbf{y}} \langle \psi(\mathbf{x} + \mathbf{y}/2)\psi^*(\mathbf{x} - \mathbf{y}/2) \rangle$

Bogolyubov chain of equations + perturbative expansion SP system: $i\partial_t \psi = \psi + \mathbf{G}\psi\psi^*\psi \leftarrow \text{short notations}$

$$\partial_t \langle \psi^* \psi \rangle = \langle \psi^* \psi \rangle + G \langle \psi^* \psi \rangle \langle \psi^* \psi \rangle + G \langle \psi^* \psi \psi^* \psi \rangle_{conn} \partial_t \langle \psi^* \psi \psi^* \psi \rangle_{conn} = \langle \psi^* \psi \psi^* \psi \rangle_{conn} + G \langle \psi^* \psi \rangle \langle \psi^* \psi \rangle \langle \psi^* \psi \rangle + O(G^2)$$

Serturbative approximation $\langle \psi^* \psi \psi^* \psi \rangle = \underbrace{\langle \psi^* \psi \rangle \langle \psi^* \psi \rangle}_{\text{Free field}} + \underbrace{\langle \psi^* \psi \psi^* \psi \rangle_{\text{conn}}}_{\text{Interaction: } O(G)}$

() Expand in $(px)^{-1} \ll 1 \Rightarrow$ Local equation for $f \propto \langle \psi^* \psi \rangle$

Solution at $p^{-1} \ll |x - x'| \ll R$ — Landau approximation

$$\frac{\partial_t f_{\mathbf{p}} + \frac{\mathbf{p}}{m} \nabla_x f_{\mathbf{p}} - m \nabla_x \bar{U} \nabla_p f_{\mathbf{p}} + \underbrace{\text{terms}}_{(t-\text{reversal})} = \underbrace{\operatorname{St} f_{\mathbf{p}}}_{f_{\mathbf{p}}^3} \sim \frac{f_{\mathbf{p}}}{\tau_{gr}}$$
relaxation time
Bose amplification
$$\frac{f_{\mathbf{p}} + \frac{\mathbf{p}}{m} \nabla_x f_{\mathbf{p}}}{r_{gr}} = \underbrace{\operatorname{St} f_{\mathbf{p}}}_{r_{gr}}$$

Time to Bose star formation:

$$\tau_{gr} = \frac{b\sqrt{2}}{12\pi^3} \frac{m^3 v^6}{G^2 \Lambda \rho^2} = \underbrace{\frac{4\sqrt{2}}{\sigma_{gr} f_p vn}}_{\text{kinetic}} \simeq \frac{R}{v} (Rmv)^3$$
$$\bigwedge = \log(mvR) - \text{Coulomb logarithm}$$

In minicluster/galaxy:

- $\tau_{gr} \gg R/v \leftarrow$ free-fall time
- *Rmv* ~ 1 condense immediately! correct for Fuzzy DM & QCD axions

Distribution function in simulation

• Solve Landau Eq. numerically!

One parameter to fit: $\Lambda = \log(mvL) + a \leftarrow \text{correction}$

$$a \approx 5$$

• We understand kinetic mechanism well

- Fuzzy DM in Dwarf galaxies QCD axions in miniclusters $\left. \begin{array}{c} \tau_{gr} \sim R/v \leftarrow \text{fast formation} \end{array} \right.$
- Still, prediction: $m\gtrsim 10^{-20}\,{\rm eV}$ \Rightarrow $\tau_{gr}>10^{10}\,{\rm yr}$ in dwarf galaxies
- Q: How do Bose stars grow?

Eggemeier, Niemeyer '20 Veltmaat, Schwabe, Niemeyer '20

• Q: Other kinetic processes?

ALP: Interaction with photons

$$\mathcal{L}_{\rm int} = \frac{g_{a\gamma\gamma}}{4} \ \mathsf{a} \ F_{\mu\nu} \widetilde{F}_{\mu\nu} \qquad \text{or} \qquad \frac{g_{a\gamma\gamma}}{4} \ \mathsf{a} \ F_{\mu\nu} F_{\mu\nu}$$
pseudoscalar scalar

Spontaneous decay

Stimulated decay

$$\partial_\mu (F_{\mu
u} + g_{a\gamma\gamma} \, a \, ilde F_{\mu
u}) = 0$$

$$\partial_\mu (F_{\mu
u} + g_{a\gamma\gamma} \, a \, { ilde F}_{\mu
u}) = 0$$

O Nonrelativistic axions:

$$\mu \partial_t c_x^+ = \partial_z c_x^+ + i g_{a\gamma\gamma} f_a m \, \psi^* c_y^- / 2^{3/2}$$
$$\mu \partial_t c_y^- = -\partial_z c_y^- - i g_{a\gamma\gamma} f_a m \, \psi c_x^+ / 2^{3/2}$$

Quasi-stationary approximation:

$$\begin{array}{ccc} t_{\gamma} & \ll & t_{a} \\ \gtrsim & \gtrsim \\ R & R/v \end{array} \Rightarrow \begin{cases} c_{i}^{\pm} \propto e^{\int^{t} \mu(t') \, dt'} \\ vR^{-1} \ll \mu \ll R^{-1} \\ \text{(start of resonance)} \end{cases}$$

- **O Boundary conditions:**
- Restoring the solution:

$$\partial_\mu (F_{\mu
u} + g_{a\gamma\gamma} \, a \, { ilde F}_{\mu
u}) = 0$$

Onrelativistic axions:

$$\mu c_{\mathsf{x}}^{+} = \partial_{z} c_{\mathsf{x}}^{+} + i g_{a\gamma\gamma} f_{a} m \, \psi^{*} c_{\mathsf{y}}^{-} / 2^{3/2}$$
$$\mu c_{\mathsf{y}}^{-} = -\partial_{z} c_{\mathsf{y}}^{-} - i g_{a\gamma\gamma} f_{a} m \, \psi c_{\mathsf{x}}^{+} / 2^{3/2}$$

- **Q** uasi-stationary approximation: $vR^{-1} \ll \mu \ll R^{-1}$
- **3** Boundary conditions: $c_i^{\pm} \to 0$ as $z \to \pm \infty$ (see the figure)
- Restoring the solution:

$$\partial_\mu (F_{\mu
u} + g_{a\gamma\gamma} \, a \, { ilde F}_{\mu
u}) = 0$$

Onrelativistic axions:

$$\mu c_{\mathsf{x}}^{+} = \partial_{z} c_{\mathsf{x}}^{+} + i g_{a\gamma\gamma} f_{a} m \ \psi^{*} c_{\mathsf{y}}^{-} / 2^{3/2}$$
$$\mu c_{\mathsf{y}}^{-} = -\partial_{z} c_{\mathsf{y}}^{-} - i g_{a\gamma\gamma} f_{a} m \ \psi c_{\mathsf{x}}^{+} / 2^{3/2}$$

- **2** Quasi-stationary approximation: $vR^{-1} \ll \mu \ll R^{-1}$
- **3** Boundary conditions: $c_i^{\pm} \to 0$ as $z \to \pm \infty$
- Restoring the solution:

$$A_i = \int d\mathbf{n}_z \ c_i^{(\mathbf{n}_z)}(\mathbf{x}) \ e^{\int^t \mu \ dt' + im(\mathbf{n}_z \mathbf{x} + t)/2} + h.c.$$

Welcome to Quantum Mechanics!

Static coherent axions (Bose stars)

$$\mathbf{v} = \mathbf{0}, \ \mu \ll R^{-1}$$

Analytic solution for any
$$\psi$$
!
 $c_x^+ = A e^{\mu z} \cos D(z)$
 $c_y^- = -iA e^{-\mu z} \sin D(z)$ $\times e^{\int^t \mu \, dt}$
 $D(z) = g_{a\gamma\gamma} f_a m 2^{-3/2} \int_{-\infty}^z \psi \, dz'$

2 Growth exponent:
$$\mu = \frac{D(+\infty) - \pi/2}{\int dz \sin[2D(z)]}$$

Solution for resonance: $D(+\infty) \ge \pi/2$

Need massive Bose stars! $M \ge M_0 = 7.66 M_{pl}/(mg_{a\gamma\gamma})$

• QCD axions:
$$M \le M_{cr} \Rightarrow g_{a\gamma\gamma} \ge 0.31/f_a$$

or collapse

Exclusion plot for QCD axions

$g_{a\gamma\gamma} \geq 0.31 \, / f_a$

Hertzberg, Schiappacasse '18; DL, Panin, Tkachev '18

Resonance in Bose star: numerical simulation

Collapsing stars: $M > M_{cr}$

Attractive ψ^4 self-interaction \Rightarrow self-similar collapse (Bosenova)

Resonance in collapsing star: numerical simulation

$$\mu = \tilde{\mu} \sqrt{-m/t}$$

Simulation of collapsing star

DL, Panin, Tkachev '20

We described:

• Simple equations for photons & axions @ $|v \ll 1|$

$$\begin{cases} Spectral problem \\ \left[\hat{H} - \mu\right] \begin{pmatrix} c_x^+ \\ c_y^- \end{pmatrix} = 0 \\ Like in QM! \end{cases}$$

• Analytic solutions \Rightarrow exact results for Bose stars

Applications: (see DL, Panin, Tkachev '20)

We described:

- Simple equations for photons & axions @ $v \ll 1$
- Analytic solutions ⇒ exact results for Bose stars

Applications: (see DL, Panin, Tkachev '20)

Two stars

Resonance is easier: $2D(\infty) \ge \pi/2$ But: $v \le (mR)^{-1}$, L > R

O Diffuse axions

Coarse-graining \Rightarrow kinetic eq. for n_{γ} $D_{\text{diff}} \equiv \frac{g_{a\gamma\gamma}^2}{8} \int \rho(z) I_{coh}(z) dz \ge 1$

• Radio amplification, $\omega_{\gamma} \approx m/2$: $F_{\gamma, out} = F_{\gamma, in}/\cos^2 D$ — Bose star (dominant if $\rho_{\text{stars}}/\rho_{\text{diffuse}} > 10^{-4}$)

 $F_{\gamma,\,out}=F_{\gamma,\,in}/(1-D_{
m diff})$ – diffuse axions

Thank you!