

Bodo Schwabe

(University of Göttingen)

FDM Structure Formation

H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nature Physics, 2014

FDM mass constraints

Quantifying FDM Halo Dynamics

- Radial density profiles
- CDM velocity dispersion vs. FDM granular structure

in three different scenarios

- Pure FDM
- FDM + Baryons
- FDM + CDM

using

- AMR grid structures
- Hybrid particle+grid Methods
- Finite differencing
- Spectral codes
- N-body algorithms

Hybrid Method

Goal:

- AMR simulation
- Particle method on low resolution levels
- Finite-difference method on finest level
- Important: Boundary conditions between methods

Madelung transformation:
$$\Psi = A \exp[-iSm/\hbar]$$

Initial phase:
$$\nabla \cdot v_0 = a^{-1} \nabla^2 S_0$$

Phase evolution:
$$\frac{\mathrm{d}S_i}{\mathrm{d}t} = \frac{1}{2} v_i^{\ 2} - V(x_i)$$

Construction of wavefunction:
$$A(x) = \sqrt{\sum_i W(x - x_i)}$$

$$S(x) = rac{\hbar}{m} \arg \left[\sum_i \sqrt{W(x-x_i)} e^{i(S_i + v_i \cdot a(x-x_i))m/\hbar}
ight]$$

Note: Classical density -> no gradient energy and interference effects

Structure of FDM Halos

J. Veltmaat, J. C. Niemeyer, and BS, *Physical Review D*, August 2018.

FDM Dwarf Galaxy with Baryons

J. Veltmaat, BS, and J. C. Niemeyer, Physical Review D, April 2020.

AxioNyx: Simulating Mixed Fuzzy and Cold Dark Matter

BS, Mateja Gosenca, Christoph Behrens, Jens C. Niemeyer, and Richard Easther, *in prep.*

Goal:

- AMR simulations for Mixed Dark Matter
- CDM -> N-body scheme
- FDM -> Spectral/Finitedifference method
- Baryonic physics -> Nyx modules for hydrodynamics and feedback

Spherical Collapse - linear

$$egin{aligned} \ddot{\delta}_{ ext{FDM}} + 2H\dot{\delta}_{ ext{FDM}} + \left(rac{k^4\hbar^2}{4m^2a^4} - 4\pi G f\overline{
ho}
ight)\delta_{ ext{FDM}} &= 4\pi G (1-f)\overline{
ho}\delta_{ ext{CDM}} \ \ddot{\delta}_{ ext{CDM}} + 2H\dot{\delta}_{ ext{CDM}} - 4\pi G (1-f)\overline{
ho}\delta_{ ext{CDM}} &= 4\pi G f\overline{
ho}\delta_{ ext{FDM}} \end{aligned}$$

$$\delta_{ ext{CDM}}(a) \propto a^{(\sqrt{1+24(1-f)}-1)/4}$$

$$\delta_{ ext{FDM}}(a) \propto a^{(\sqrt{1+24(1-f)}+3)/4}$$

Spherical Collapse - Non-linear

$$f(\mathbf{v}) = rac{1}{N} \left| \int \mathrm{d}^3 x \exp\left[-i m \mathbf{v} \cdot \mathbf{x} / \hbar
ight] \psi(\mathbf{x})
ight|^2$$

$$v_c=rac{2\pi}{7.5}rac{\hbar}{mr_c}$$

Spherical Collapse - Non-linear

$$A(t)=A_1\cdot(t-t_0)/ au_{
m gr}+A_0f^{1/2}$$

$$au_{
m gr}=rac{0.7\sqrt{2}}{12\pi^3}rac{m^3v_c^6}{G^2
ho_c^2\Lambda}\simeq 0.015rac{t_c}{\Lambda}$$

Conclusions

- FDM structure formation similar to CDM on super deBroglie scales (except cut-off in initial power spectrum as for WDM)
 - lacktriangle Weakly non-linear probes like Lyman-alpha exclude $m < 10^{-21} \, \mathrm{eV}$
- Distinguishing features of FDM: Strong stochastic density fluctuations in halos on deBroglie length and time scales and formation of stable, oscillating soliton cores in center of halos
 - Local FDM density important for experiments but not well constraint yet
 - Heavier FDM mass can be best constrained on non-linear, galactic scales (soliton osc., soliton mergers, gravitational heating/cooling, tidal disruption,...)
 - -- Need further dedicated FDM simulations on galactic scales --