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Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the

= laboratory/system or 1ts velocity through space

Consider operators
O 3 QEW“% szyluiDywa S
Lrr p O

Make scalars by contracting with objects possessing Lorentz indices!
a
7!

Eg LoD —a, vy, la,] = [GeV]

Here @, 1s a fixed background vector field
filling all of spacetime
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What effects are induced by £, ?

An observer Lorentz transformation (OLT) 1s a coordinate transformation

at — AH a”
(x) = P'(a") = Sy(r)

—a, Yy — —a,pyHep

X

Under an OLT the background a,, transtorms like an ordinary four vector

Hence, there 1s no change in the physics; the background cannot be seen by
performing observer transformations (changing coordinates)
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A particle Lorentz transformation (PLT) 1s a transformation of the physical system

p(x) = ¢/ (x) = SY(A™ )

Net physical effect
—a, i — — (A7) | a" e
7é —CLMM“ID

Unlike OLTs, PLTs can produce physical effects as a result of the background

The rotated system obeys a different
physical law than the same system with —> Lorentz violation!

rotated coordinates
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We use a model-independent, effective *D. Colladay, V. A. Kostelecky, PRD 55,
6760 (1997); PRD 58, 1166002 (1998)

field theory framework: the Standard- *V. A. Kostelecky, PRD 69, 105009 (2004)
Model Extension (SME)*

Contains all possible terms that
»CSME — L:GR —+ »CSM —+ »CLV break Lorentz and CPT
symmetry* consistent with the
particle/field content of GR
and the SM

CPTV = LV inrealistic EFT*

e “Coefticients for Lorentz violation”

e Observer Lorentz tensors *D. Colladay, V. A. Kostelecky,
e Coupling constants PRD 55, 6760[)(199711

- - 0.W.G Phys. Rev.
e Necessarily small (perturbative) Lo %o égizozr%’zoozy)s Y

e Experimentally accessible!
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V. Alan Kostelecky® and Neil Russell®
* Physics Department, Indiana University, Bloomington, IN 47405
® Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in
the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities
in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties
are also compiled.
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Data Tables for Lorentz and CPT Violation

V. Alan Kostelecky® and Neil Russell®
* Physics Department, Indiana University, Bloomington, IN 47405
® Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update|of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in
the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities
in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties
are also compiled.

Table D19. Nonminimal photon sector, d =7

(V)00
(7)

 Yim(27°,6°) k) < 2x10728 GeV™®  Astrophysical birefringence [171]*
jm ~J (V)jm

Combination Result System Ref.

| i Yim (110.47°, 71.34°)k§‘7,))jm| <2x107% GeV~3  Spectropolarimetry [170]
|3 jm Yim (330.68°,42.28°)k(7) . | <4 x 1076 GeV™® [170]
60 <6x1076Gev® 7 [170]

]

100s of bounds for nearly every
major subfield of physics

Much of the QCD sector 1s yet to be explored!
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High-energy hadrons

Consider a high-energy hadron

Fraction of plus momenta 1s boost invariant, leading to familiar
parameterization for high-energy, massless, on-shell partons within hadrons

E=kT/pt
kH = Ep”

Covariant expression; can be used 1n any frame
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Quark-sector Lorentz-violating effects

Massless quarks modified by Lorentz-violating effects

Ly = %zﬁ(*y“il?u + @)¢ + h.c.

E.g. general modified kinetic terms

L

%@Eéw D (CL(S))AB &A%ﬂpB — (b(g))iB &A%’)%ﬂpB T

-+ (0(4))’LW QEA’Y iDuwB + (d(4))’LW &Afyf)fy Z.l)l/wB "o
AB H AB H

pof
_ (a(5))AB YavuiDoiDgybp + - -

We consider the following (spin-independent, flavor-diagonal) effects
- . NN .
L= 30p"iDus + 5 (i) PsyuiDyiy
f=u,d
— (@B ey i D iDgyib s + huc
f frut (ot )V -G
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Quark-sector Lorentz-violating effects

Modified Dirac equation
1 1% : ) o : :
[(77“ + C? )/Y,uzau — agc ) B%zﬁaz@g]wf =0

Dispersion relation
k% = k? + O(coefficients) = 0

E? = |k|? + O(coefficients)

The light-cone decomposition no longer ngcessarily true

ot~ (pt, L0 ) + O(M/p)

kH = &pH 1s no longer consistent

Instead, for a covariant definition to be retained k" = &pH
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T =i / Fwe ™ (p, 8| T4t (w)5,(0)[p, 5).e

x oo L, ImTH

k E
Factorization in DIS limit most simply shown #W#
in frame where P + q = 0 p )
g ~ / d

+ small corrections

e kinematical corrections
e radiative etffects

What happens when Lorentz violation 1s present?
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Application I: deep 1nelastic scattering (DIS)

In the presence of Lorentz violation, factorization occurs in a modified Breit frame

Calculate the imaginary part of internal propagator

1 —~ 2
Im = S [ (2)0(k°) + 5(—k )9(—k0)}
k2 + ie / ]
Quark initiated Antiquark initiated

Contributes to >—< K

Will focus on quark contribution
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<

Example: L. D %Cﬁyﬂf(x)ivﬂawa(x)

E“ = kM + ¢ ”k;u N
With on-shell parameterization k£ = f D
q f q,u _I_ C v

>~

2
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<

Example: L. D %c‘f”z@f(x)ivﬂﬁwa(a;)

k'l; — k’u —+ C'f;yk,/ . o
With on-shell parameterization -

~ v 75 1 % Qv
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<

Example: L. D %c‘f”z@f(x)ivﬂﬁwa(a;)

k'l; — k’u —+ C'f;yk,/ . o
With on-shell parameterization -

~ L 1
d)\ itpem, nH
\

nt 4+ c’;ana

“Shifted” conventional scenario
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Estimating sensitivities at colliders

Using data from HERA, the LHC, and the future electron-ion collider
(EIC) we obtain estimates on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit .
: : ~ 23 hrs 56 mins
sidereal time dependence

/"
o(t) ~ osm (1l + co + c1 cos(wgTa) + co cos(RugTe) + -+ )

Coefficients also depend on laboratory colatitude and beam directions!
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Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current
DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

For each (x,Q) value we:

e Integrate the SME cross section into 4 bins of a sidereal day

e Generate 1000 normally-distributed pseudoexperiments about the reported
cross section using total uncertainties

e Build chi-square as a function of a single coefficient at a time.

Nbins
X; (@,Q% ¢)") = 3 [0"ME()") — 07 Pl Crno™™E(c}) — 07 s,
m.,mn

Y

e Minimize and extract 95% CL constraint
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Generally speaking, region of most sensitivity at low x, low-moderate Q, and

higher collision energies
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An actual experimental search

36 coefficients for Lorentz violation which contribute to time-dependent
effects have not been experimentally bounded

TX TY TXY TXZ
Cf 7Cf 7...7CLSf 7an R

We have differential cross sections and understand the regions of kinematical
sensitivity. Oscillations occur up to the third harmonic 1n sidereal frequency.

We would like to perform a study of ZEUS neutral-current DIS data for time-
dependent effects

What is needed (?):

e (Cross sections as functions of (x, Q) in (4-8) bins of sidereal time

¢ Understanding of systematics: which uncertainties matter over the
course of a few hours 1n a day? E.g., beam luminosity ~ constant?

e Since SME cross section 1s different in each bin, can construct
observables that partially shield against systematics
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Recap + Conclusions

A framework has been developed for studying quark-sector Lorentz
violation 1n hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process
Consistency checks: Approach 1s consistent with the OPE and Ward 1dentities

Lorentz- and CPT-violating effects on PDFs deduced

Estimated limits for minimal spin-independent coefficients are improved
and first determination of nonminimal coefficient sensitivities are placed

Many new experimental opportunities to search for Lorentz and CPT
violation in DIS

Thank you!



