# Lorentz violation analysis with ZEUS data





Nathan Sherrill Indiana University ZEUS meeting, January 2020



In collaboration with Enrico Lunghi

#### Talk overview

What is Lorentz violation?

How to search for Lorentz violation?

Effects on high-energy hadrons

Application: deep inelastic scattering

Estimates for colliders

An analysis with real data

#### Talk overview

What is Lorentz violation?

How to search for Lorentz violation?

Effects on high-energy hadrons

Application: deep inelastic scattering

Estimates for colliders

An analysis with real data

Based on: arXiv:1911.04002; PRD 98, 115018 (2018); PLB 769, 272 (2017)

Lorentz invariance: the laws of physics are the same for all inertial observers

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \ \cdots$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \cdots$$

$$\mathcal{L}_{ ext{LI}} 
ot\supset \mathcal{O}^{\mu
u}$$

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \cdots$$
 $\mathcal{L}_{\mathrm{LI}}\not\supset \mathcal{O}^{\mu\nu}$ 

Make scalars by contracting with objects possessing Lorentz indices!

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

#### Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \cdots$$
 $\mathcal{L}_{\mathrm{LI}}\not\supset \mathcal{O}^{\mu\nu}$ 

Make scalars by contracting with objects possessing Lorentz indices!

E.g. 
$$\mathcal{L}_{\mathbf{a}} \supset -\mathbf{a}_{\mu} \bar{\psi} \gamma^{\mu} \psi$$
,  $[\mathbf{a}_{\mu}] = [\text{GeV}]$ 

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

#### Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \cdots$$
 $\mathcal{L}_{\mathrm{LI}}\not\supset \mathcal{O}^{\mu\nu}$ 

Make scalars by contracting with objects possessing Lorentz indices!

E.g. 
$$\mathcal{L}_{\mathbf{a}} \supset -\mathbf{a}_{\mu} \bar{\psi} \gamma^{\mu} \psi$$
,  $[\mathbf{a}_{\mu}] = [\text{GeV}]$ 

Here  $a_{\mu}$  is a fixed background vector field filling all of spacetime

Lorentz invariance: the laws of physics are the same for all inertial observers

Experimental results do not depend on the orientation of the laboratory/system or its velocity through space

#### Consider operators

$$\mathcal{O}^{\mu\nu\cdots}\supset \bar{\psi}\gamma^{\mu}\psi, \ \ \bar{\psi}\gamma^{\mu}iD^{\nu}\psi, \ \ \cdots$$

$$\mathcal{L}_{ ext{LI}} 
ot\supset \mathcal{O}^{\mu
u}$$

Make scalars by contracting with objects possessing Lorentz indices!

E.g. 
$$\mathcal{L}_{a}\supset -a_{\mu}\bar{\psi}\gamma^{\mu}\psi, \quad [a_{\mu}]=[\mathrm{GeV}]$$

Here  $a_{\mu}$  is a fixed background vector field filling all of spacetime



What effects are induced by  $\mathcal{L}_a$ ?

What effects are induced by  $\mathcal{L}_a$ ?

What effects are induced by  $\mathcal{L}_a$ ?



What effects are induced by  $\mathcal{L}_a$ ?



What effects are induced by  $\mathcal{L}_a$ ?



What effects are induced by  $\mathcal{L}_a$ ?



What effects are induced by  $\mathcal{L}_a$ ?



What effects are induced by  $\mathcal{L}_a$ ?

An observer Lorentz transformation (OLT) is a coordinate transformation



Under an OLT the background  $a_{\mu}$  transforms like an ordinary four vector

Hence, there is no change in the physics; the background cannot be seen by performing observer transformations (changing coordinates)

A particle Lorentz transformation (PLT) is a transformation of the physical system

A particle Lorentz transformation (PLT) is a transformation of the physical system



A particle Lorentz transformation (PLT) is a transformation of the physical system



A particle Lorentz transformation (PLT) is a transformation of the physical system



$$a_{\mu} \to a_{\mu}$$
 
$$\psi(x) \to \psi'(x) = S\psi(\Lambda^{-1}x)$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

A particle Lorentz transformation (PLT) is a transformation of the physical system



$$a_{\mu} \to a_{\mu}$$
 
$$\psi(x) \to \psi'(x) = S\psi(\Lambda^{-1}x)$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Unlike OLTs, PLTs can produce physical effects as a result of the background

A particle Lorentz transformation (PLT) is a transformation of the physical system



$$\begin{aligned} a_{\mu} &\to a_{\mu} \\ \psi(x) &\to \psi'(x) = S\psi(\Lambda^{-1}x) \end{aligned}$$

Net physical effect

$$-a_{\mu}\bar{\psi}\gamma^{\mu}\psi \to -\left(\Lambda^{-1}\right)_{\mu\nu}a^{\nu}\bar{\psi}\gamma^{\mu}\psi$$

$$\neq -a_{\mu}\bar{\psi}\gamma^{\mu}\psi$$

Unlike OLTs, PLTs can produce physical effects as a result of the background

The rotated system obeys a different physical law than the same system with rotated coordinates

⇒ Lorentz violation!

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)\*

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

\*V. A. Kostelecký, PRD 69, 105009 (2004)

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)\*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

\*V. A. Kostelecký, PRD 69, 105009 (2004)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry\* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$  in realistic  $EFT^*$ 

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

\*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)\*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

$$\mathcal{L}_{ ext{LV}} = \sum_{i} k_{i\mu
u}...\mathcal{O}_{i}^{\mu
u}...$$

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

\*V. A. Kostelecký, PRD 69, 105009 (2004)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry\* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$  in realistic  $EFT^*$ 

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

\*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

We use a model-independent, effective field theory framework: the Standard-Model Extension (SME)\*

$$\mathcal{L}_{\mathrm{SME}} = \mathcal{L}_{\mathrm{GR}} + \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{LV}}$$

$$\mathcal{L}_{ ext{LV}} = \sum_{i} k_{i\mu\nu} ... \mathcal{O}_{i}^{\mu\nu ...}$$

- \*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

  \*V. A. Kostelecký, PRD 69, 105009 (2004)
- Contains <u>all possible</u> terms that break Lorentz and CPT symmetry\* consistent with the particle/field content of GR and the SM

 $CPTV \Rightarrow LV$  in realistic  $EFT^*$ 

- "Coefficients for Lorentz violation"
- Observer Lorentz tensors
- Coupling constants
- Necessarily small (perturbative)
- Experimentally accessible!

\*D. Colladay, V. A. Kostelecký, PRD 55, 6760 (1997)

\*O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)

#### Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký<sup>a</sup> and Neil Russell<sup>b</sup>

<sup>a</sup> Physics Department, Indiana University, Bloomington, IN 47405

<sup>b</sup> Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.

#### Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký<sup>a</sup> and Neil Russell<sup>b</sup>

<sup>a</sup> Physics Department, Indiana University, Bloomington, IN 47405

<sup>b</sup> Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.

#### How to search for Lorentz violation?

#### Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký<sup>a</sup> and Neil Russell<sup>b</sup>

<sup>a</sup> Physics Department, Indiana University, Bloomington, IN 47405

<sup>b</sup> Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.



| Table D19. Nonminimal photon sector, $d=7$                                                                                               |                                        |                             |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|----------|--|--|
| Combination                                                                                                                              | Result                                 | System                      | Ref.     |  |  |
| $ \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ})k_{(V)jm}^{(7)} $                                                                       | $< 2 \times 10^{-6} \text{ GeV}^{-3}$  | Spectropolarimetry          | [170]    |  |  |
| $  \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ}) k_{(V)jm}^{(7)}    \sum_{jm} Y_{jm}(330.68^{\circ}, 42.28^{\circ}) k_{(V)jm}^{(7)}  $ | $< 4 \times 10^{-6} \text{ GeV}^{-3}$  | "                           | [170]    |  |  |
| $ k_{(V)00}^{(7)} $                                                                                                                      | $< 6 \times 10^{-6} \text{ GeV}^{-3}$  | "                           | [170]    |  |  |
| $ \sum_{jm}Y_{jm}(27^{\circ},6^{\circ})k_{(V)jm}^{(7)} $                                                                                 | $< 2 \times 10^{-28} \text{ GeV}^{-3}$ | Astrophysical birefringence | e [171]* |  |  |

#### How to search for Lorentz violation?

#### Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký<sup>a</sup> and Neil Russell<sup>b</sup>

<sup>a</sup> Physics Department, Indiana University, Bloomington, IN 47405

<sup>b</sup> Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.



| Table D19. Nonminimal photon sector, $d=7$                                                                                               |                                        |                             |          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|----------|--|--|
| Combination                                                                                                                              | Result                                 | System                      | Ref.     |  |  |
| $ \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ})k_{(V)jm}^{(7)} $                                                                       | $< 2 \times 10^{-6} \text{ GeV}^{-3}$  | Spectropolarimetry          | [170]    |  |  |
| $  \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ}) k_{(V)jm}^{(7)}    \sum_{jm} Y_{jm}(330.68^{\circ}, 42.28^{\circ}) k_{(V)jm}^{(7)}  $ | $< 4 \times 10^{-6} \text{ GeV}^{-3}$  | "                           | [170]    |  |  |
| $ k_{(V)00}^{(7)} $                                                                                                                      | $< 6 \times 10^{-6} \text{ GeV}^{-3}$  | "                           | [170]    |  |  |
| $ \sum_{jm}Y_{jm}(27^{\circ},6^{\circ})k_{(V)jm}^{(7)} $                                                                                 | $< 2 \times 10^{-28} \text{ GeV}^{-3}$ | Astrophysical birefringence | e [171]* |  |  |

100s of bounds for nearly every major subfield of physics

#### How to search for Lorentz violation?

#### Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký<sup>a</sup> and Neil Russell<sup>b</sup>

<sup>a</sup> Physics Department, Indiana University, Bloomington, IN 47405

<sup>b</sup> Physics Department, Northern Michigan University, Marquette, MI 49855

January 2020 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.



| Table D19. Nonminimal photon sector, $d=7$                                                                                                                           |                                        |                           |           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|-----------|--|
| Combination                                                                                                                                                          | Result                                 | $\mathbf{System}$         | Ref.      |  |
| $ \sum_{jm} Y_{jm}(110.47^{\circ}, 71.34^{\circ})k_{(V)jm}^{(7)} $                                                                                                   | $< 2 \times 10^{-6} \text{ GeV}^{-3}$  | Spectropolarimetry        | [170]     |  |
| $\left  \sum_{jm} Y_{jm} (110.47^{\circ}, 71.34^{\circ}) k_{(V)jm}^{(7)} \right  \\ \left  \sum_{jm} Y_{jm} (330.68^{\circ}, 42.28^{\circ}) k_{(V)jm}^{(7)} \right $ | $< 4 \times 10^{-6} \text{ GeV}^{-3}$  | "                         | [170]     |  |
| $ k_{(V)00}^{(7)} $                                                                                                                                                  | $< 6 \times 10^{-6} \text{ GeV}^{-3}$  | "                         | [170]     |  |
| \ \ /                                                                                                                                                                | $< 2 \times 10^{-28} \text{ GeV}^{-3}$ | Astrophysical birefringen | ce [171]* |  |

100s of bounds for nearly every major subfield of physics

Much of the QCD sector is yet to be explored!

Consider a high-energy hadron

Consider a high-energy hadron



Consider a high-energy hadron



Consider a high-energy hadron



The partons have momenta that scale like  $p^{\mu}$ 



Consider a high-energy hadron



The partons have momenta that scale like  $p^{\mu}$ 



Consider a high-energy hadron



The partons have momenta that scale like  $p^{\mu}$ 



Fraction of plus momenta is boost invariant, leading to familiar parameterization for high-energy, massless, on-shell partons within hadrons

$$\xi \equiv k^+/p^+$$
$$k^\mu = \xi p^\mu$$

Covariant expression; can be used in any frame

Massless quarks modified by Lorentz-violating effects

$$\mathcal{L}_{\psi} = \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} + \widehat{\mathcal{Q}}) \psi + \text{h.c.}$$

Massless quarks modified by Lorentz-violating effects

$$\mathcal{L}_{\psi} = \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} + \widehat{\mathcal{Q}}) \psi + \text{h.c.}$$

E.g. general modified kinetic terms

Massless quarks modified by Lorentz-violating effects

$$\mathcal{L}_{\psi} = \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} + \mathbf{Q}) \psi + \text{h.c.}$$

E.g. general modified kinetic terms

$$\frac{1}{2}\bar{\psi}\widehat{\mathcal{Q}}\psi \supset -\left(a^{(3)}\right)_{AB}^{\mu}\bar{\psi}_{A}\gamma_{\mu}\psi_{B} - \left(b^{(3)}\right)_{AB}^{\mu}\bar{\psi}_{A}\gamma_{5}\gamma_{\mu}\psi_{B} + \cdots 
+ \left(c^{(4)}\right)_{AB}^{\mu\nu}\bar{\psi}_{A}\gamma_{\mu}iD_{\nu}\psi_{B} + \left(d^{(4)}\right)_{AB}^{\mu\nu}\bar{\psi}_{A}\gamma_{5}\gamma_{\mu}iD_{\nu}\psi_{B} \cdots 
- \left(a^{(5)}\right)_{AB}^{\mu\alpha\beta}\bar{\psi}_{A}\gamma_{\mu}iD_{(\alpha}iD_{\beta)}\psi_{B} + \cdots$$

Massless quarks modified by Lorentz-violating effects

$$\mathcal{L}_{\psi} = \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} + \widehat{\mathcal{Q}}) \psi + \text{h.c.}$$

E.g. general modified kinetic terms

$$\frac{1}{2}\bar{\psi}\widehat{Q}\psi \supset -\left(a^{(3)}\right)_{AB}^{\mu}\bar{\psi}_{A}\gamma_{\mu}\psi_{B} - \left(b^{(3)}\right)_{AB}^{\mu}\bar{\psi}_{A}\gamma_{5}\gamma_{\mu}\psi_{B} + \cdots 
+ \left(c^{(4)}\right)_{AB}^{\mu\nu}\bar{\psi}_{A}\gamma_{\mu}iD_{\nu}\psi_{B} + \left(d^{(4)}\right)_{AB}^{\mu\nu}\bar{\psi}_{A}\gamma_{5}\gamma_{\mu}iD_{\nu}\psi_{B} \cdots 
- \left(a^{(5)}\right)_{AB}^{\mu\alpha\beta}\bar{\psi}_{A}\gamma_{\mu}iD_{(\alpha}iD_{\beta)}\psi_{B} + \cdots$$

We consider the following (spin-independent, flavor-diagonal) effects

$$\mathcal{L} = \sum_{f=u,d} \frac{1}{2} \bar{\psi}_f \gamma^{\mu} i D_{\mu} \psi_f + \frac{1}{2} (c_f^{(4)})^{\mu\nu} \bar{\psi}_f \gamma_{\mu} i D_{\nu} \psi_f$$
$$- (a_f^{(5)})^{\mu\alpha\beta} \bar{\psi}_f \gamma_{\mu} i D_{(\alpha} i D_{\beta)} \psi_f + \text{h.c.}$$

Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

#### Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

#### Dispersion relation

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

$$E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$$

Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

Dispersion relation

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

$$E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$$

The light-cone decomposition no longer necessarily true

$$k^{\mu} \sim \left(p^+, \frac{M^2}{2p^+}, M\right) + \mathcal{O}(M/p^+)$$

Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

Dispersion relation

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

$$E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$$

The light-cone decomposition no longer necessarily true

$$k^{\mu} \sim \left(p^+, \frac{M}{2r} M\right) + \mathcal{O}(M/p^+)$$

Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

Dispersion relation

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

$$E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$$

The light-cone decomposition no longer necessarily true

$$k^{\mu} \sim \left(p^+, \frac{M}{2r} M\right) + \mathcal{O}(M/p^+)$$

 $k^{\mu} = \xi p^{\mu}$  is no longer consistent

Modified Dirac equation

$$[(\eta^{\mu\nu} + c_f^{\mu\nu})\gamma_{\mu}i\partial_{\mu} - a_f^{(5)\mu\alpha\beta}\gamma_{\mu}i\partial_{\alpha}i\partial_{\beta}]\psi_f = 0$$

Dispersion relation

$$\widetilde{k}^2 = k^2 + \mathcal{O}(\text{coefficients}) = 0$$

$$E^2 = |\vec{k}|^2 + \mathcal{O}(\text{coefficients})$$

The light-cone decomposition no longer necessarily true

$$k^{\mu} \sim \left(p^+, \frac{M}{2}\right) + \mathcal{O}(M/p^+)$$

 $k^{\mu} = \xi p^{\mu}$  is no longer consistent

Instead, for a covariant definition to be retained  $\,\widetilde{k}^{\mu} = \xi p^{\mu}\,$ 











$$T_{\mu\nu} = i \int d^4w e^{iq \cdot w} \langle p, s | T j^{\dagger}_{\mu}(w) j_{\nu}(0) | p, s \rangle_c$$
$$\sigma \propto L_{\mu\nu} \text{Im} T^{\mu\nu}$$

$$\sigma \propto L_{\mu\nu} {
m Im} T^{\mu\nu}$$



Factorization in DIS limit most simply shown in frame where  $\vec{p} + \vec{q} = \vec{0}$ 



Factorization in DIS limit most simply shown in frame where  $\vec{p} + \vec{q} = \vec{0}$ 



$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + \text{small corrections}$$



Factorization in DIS limit most simply shown in frame where  $\vec{p} + \vec{q} = 0$ 



$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + {\rm small \ corrections}$$



- kinematical corrections
- radiative effects



Factorization in DIS limit most simply shown in frame where  $\vec{p} + \vec{q} = 0$ 



$$\sigma \sim \int d\xi \sigma_{\rm parton}(\xi) f(\xi) + \text{small corrections}$$



- kinematical corrections
- radiative effects

What happens when Lorentz violation is present?

In the presence of Lorentz violation, factorization occurs in a modified Breit frame

$$\vec{p} + \tilde{\vec{q}} = \vec{0}$$
  $\qquad \widetilde{q} \equiv \widetilde{k + q} - \widetilde{k}$ 



In the presence of Lorentz violation, factorization occurs in a modified Breit frame

$$\vec{p} + \widetilde{\vec{q}} = \vec{0}$$
  $\widetilde{q} \equiv \widetilde{k + q} - \widetilde{k}$ 



Calculate the imaginary part of internal propagator

$$\operatorname{Im} \frac{1}{\widetilde{k}^2 + i\epsilon} = -\pi \left[ \delta(\widetilde{k}^2) \theta(k^0) + \delta(\widetilde{-k}^2) \theta(-k^0) \right]$$

In the presence of Lorentz violation, factorization occurs in a modified Breit frame

$$\vec{p} + \widetilde{\vec{q}} = \vec{0}$$
  $\widetilde{q} \equiv \widetilde{k + q} - \widetilde{k}$ 



Calculate the imaginary part of internal propagator

$$\operatorname{Im} \frac{1}{\widetilde{k}^2 + i\epsilon} = -\pi \left[ \delta(\widetilde{k}^2)\theta(k^0) + \delta(\widetilde{-k}^2)\theta(-k^0) \right]$$

Quark initiated

Antiquark initiated

Contributes to





In the presence of Lorentz violation, factorization occurs in a modified Breit frame

$$\vec{p} + \widetilde{\vec{q}} = \vec{0}$$
  $\widetilde{q} \equiv \widetilde{k + q} - \widetilde{k}$ 



Calculate the imaginary part of internal propagator

$$\operatorname{Im} \frac{1}{\widetilde{k}^2 + i\epsilon} = -\pi \left[ \delta(\widetilde{k}^2)\theta(k^0) + \delta(\widetilde{-k}^2)\theta(-k^0) \right]$$

Quark initiated

Antiquark initiated

Contributes to





Will focus on quark contribution

Example:  $\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overset{\leftrightarrow}{\partial}_{\nu} \psi_{f}(x)$ 

Example: 
$$\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overset{\leftrightarrow}{\partial}_{\nu} \psi_{f}(x)$$

$$\begin{split} \widetilde{k}_f^\mu &= k^\mu + c_f^{\mu\nu} k_\nu \\ \widetilde{q}_f^\mu &= q^\mu + c_f^{\mu\nu} q_\nu \end{split} \qquad \text{With on-shell parameterization} \quad \widetilde{k} = \xi p \end{split}$$

Example: 
$$\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overset{\leftrightarrow}{\partial}_{\nu} \psi_{f}(x)$$

$$\widetilde{k}_f^{\mu} = k^{\mu} + c_f^{\mu\nu} k_{\nu}$$

$$\widetilde{q}_f^{\mu} = q^{\mu} + c_f^{\mu\nu} q_{\nu}$$

With on-shell parameterization  $\tilde{k} = \xi p$ 

$$\left| \frac{1}{\xi p} \right|^{2} \sim \operatorname{Tr} \left[ \left( \gamma^{\mu} + c_{f}^{\alpha \mu} \gamma_{\alpha} \right) \frac{1}{(\xi p^{\alpha} + q^{\alpha} + c_{f}^{\alpha \beta} q_{\beta}) \gamma_{\alpha} + i\epsilon} \left( \gamma^{\nu} + c_{f}^{\alpha \nu} \gamma_{\alpha} \right) \gamma_{\beta} \xi p^{\beta} \right]$$

Example: 
$$\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overset{\leftrightarrow}{\partial}_{\nu} \psi_{f}(x)$$

$$\widetilde{k}_f^{\mu} = k^{\mu} + c_f^{\mu\nu} k_{\nu}$$

$$\widetilde{q}_f^{\mu} = q^{\mu} + c_f^{\mu\nu} q_{\nu}$$

With on-shell parameterization  $\tilde{k} = \xi p$ 

$$\left| \frac{1}{\xi p} \right|^{2} \sim \operatorname{Tr} \left[ (\gamma^{\mu} + c_{f}^{\alpha \mu} \gamma_{\alpha}) \frac{1}{(\xi p^{\alpha} + q^{\alpha} + c_{f}^{\alpha \beta} q_{\beta}) \gamma_{\alpha} + i\epsilon} (\gamma^{\nu} + c_{f}^{\alpha \nu} \gamma_{\alpha}) \gamma_{\beta} \xi p^{\beta} \right]$$

Example: 
$$\mathcal{L}_{c} \supset \frac{1}{2} c_{f}^{\mu\nu} \bar{\psi}_{f}(x) i \gamma_{\mu} \overleftrightarrow{\partial}_{\nu} \psi_{f}(x)$$

$$\widetilde{k}_f^{\mu} = k^{\mu} + c_f^{\mu\nu} k_{\nu}$$

$$\widetilde{q}_f^{\mu} = q^{\mu} + c_f^{\mu\nu} q_{\nu}$$

With on-shell parameterization  $\widetilde{k} = \xi p$ 

$$\left| \frac{1}{\xi p} \right|^{2} \sim \operatorname{Tr} \left[ (\gamma^{\mu} + c_{f}^{\alpha \mu} \gamma_{\alpha}) \frac{1}{(\xi p^{\alpha} + q^{\alpha} + c_{f}^{\alpha \beta} q_{\beta}) \gamma_{\alpha} + i\epsilon} (\gamma^{\nu} + c_{f}^{\alpha \nu} \gamma_{\alpha}) \gamma_{\beta} \xi p^{\beta} \right]$$

$$\frac{\langle \text{hadron} | \Gamma^{+} | \text{hadron} \rangle}{\langle \text{hadron} | \Gamma^{+} | \text{hadron} \rangle} \sim f_{f}(\xi, \dots) = \int \frac{d\lambda}{2\pi} e^{-i\xi p \cdot n\lambda} \langle p | \bar{\psi}(\lambda \tilde{n}_{f}) \frac{\gamma_{\mu} n^{\mu}}{2} \psi(0) | p \rangle$$

$$n^{\mu} + c_{f}^{\mu \alpha} n_{\alpha}$$

"Shifted" conventional scenario

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit sidereal time dependence

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit sidereal time dependence

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit sidereal time dependence  $\sigma(t)\sim\sigma_{\rm SM}(1+c_0+c_1\cos(\omega_\oplus T_\oplus)+c_2\cos(2\omega_\oplus T_\oplus)+\cdots)$ 

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit sidereal time dependence

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$

23 hrs 56 mins

Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Using data from HERA, the LHC, and the future electron-ion collider (EIC) we obtain *estimates* on the sensitivity to the coefficients of interest

Technique relies on coefficient combinations that exhibit sidereal time dependence  $\sim$  23 hrs 56 mins

$$\sigma(t) \sim \sigma_{\rm SM}(1 + c_0 + c_1 \cos(\omega_{\oplus} T_{\oplus}) + c_2 \cos(2\omega_{\oplus} T_{\oplus}) + \cdots)$$



Coefficients also depend on laboratory colatitude and beam directions!

Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

For each (x,Q) value we:

Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

For each (x,Q) value we:

- Integrate the SME cross section into 4 bins of a sidereal day
- Generate 1000 normally-distributed pseudoexperiments about the reported cross section using total uncertainties
- Build chi-square as a function of a single coefficient at a time.

Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

For each (x,Q) value we:

- Integrate the SME cross section into 4 bins of a sidereal day
- Generate 1000 normally-distributed pseudoexperiments about the reported cross section using total uncertainties
- Build chi-square as a function of a single coefficient at a time.

$$\chi_i^2(x, Q^2, c_f^{\mu\nu}) = \sum_{m,n}^{n_{\text{bins}}} [\sigma^{\text{SME}}(c_f^{\mu\nu}) - \sigma_i^{\text{exp}}]_m C_{mn}^{-1} [\sigma^{\text{SME}}(c_f^{\mu\nu}) - \sigma_i^{\text{exp}}]_n$$

Extract bounds on coefficients: Using H1 and ZEUS combined 644 neutral-current DIS measurements (Eur. Phys. J. C75 (2015)). For each (x,Q) value:

For each (x,Q) value we:

- Integrate the SME cross section into 4 bins of a sidereal day
- Generate 1000 normally-distributed pseudoexperiments about the reported cross section using total uncertainties
- Build chi-square as a function of a single coefficient at a time.

$$\chi_i^2(x, Q^2, c_f^{\mu\nu}) = \sum_{m,n}^{n_{\text{bins}}} [\sigma^{\text{SME}}(c_f^{\mu\nu}) - \sigma_i^{\text{exp}}]_m C_{mn}^{-1} [\sigma^{\text{SME}}(c_f^{\mu\nu}) - \sigma_i^{\text{exp}}]_n$$

• Minimize and extract 95% CL constraint







Generally speaking, region of most sensitivity at low x, low-moderate Q, and higher collision energies

# An actual experimental search

#### An actual experimental search

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

#### An actual experimental search

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

$$c_f^{TX}, c_f^{TY}, \cdots, a_{\mathrm{S}f}^{TXY}, a_{\mathrm{S}f}^{TXZ}, \cdots$$

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

$$c_f^{TX}, c_f^{TY}, \cdots, a_{\mathrm{S}f}^{TXY}, a_{\mathrm{S}f}^{TXZ}, \cdots$$

We have differential cross sections and understand the regions of kinematical sensitivity. Oscillations occur up to the third harmonic in sidereal frequency.

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

$$c_f^{TX}, c_f^{TY}, \cdots, a_{\mathrm{S}f}^{TXY}, a_{\mathrm{S}f}^{TXZ}, \cdots$$

We have differential cross sections and understand the regions of kinematical sensitivity. Oscillations occur up to the third harmonic in sidereal frequency.

We would like to perform a study of ZEUS neutral-current DIS data for time-dependent effects

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

$$c_f^{TX}, c_f^{TY}, \cdots, a_{\mathrm{S}f}^{TXY}, a_{\mathrm{S}f}^{TXZ}, \cdots$$

We have differential cross sections and understand the regions of kinematical sensitivity. Oscillations occur up to the third harmonic in sidereal frequency.

We would like to perform a study of ZEUS neutral-current DIS data for time-dependent effects

What is needed (?):

36 coefficients for Lorentz violation which contribute to time-dependent effects have not been experimentally bounded

$$c_f^{TX}, c_f^{TY}, \cdots, a_{\mathrm{S}f}^{TXY}, a_{\mathrm{S}f}^{TXZ}, \cdots$$

We have differential cross sections and understand the regions of kinematical sensitivity. Oscillations occur up to the third harmonic in sidereal frequency.

We would like to perform a study of ZEUS neutral-current DIS data for time-dependent effects

What is needed (?):

- Cross sections as functions of (x, Q) in (4-8) bins of sidereal time
- Understanding of systematics: which uncertainties matter over the course of a few hours in a day? E.g., beam luminosity ~ constant?
- Since SME cross section is different in each bin, can construct observables that partially shield against systematics

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

Consistency checks: Approach is consistent with the OPE and Ward identities

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

Consistency checks: Approach is consistent with the OPE and Ward identities

Lorentz- and CPT-violating effects on PDFs deduced

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

Consistency checks: Approach is consistent with the OPE and Ward identities

Lorentz- and CPT-violating effects on PDFs deduced

Estimated limits for minimal spin-independent coefficients are improved and first determination of nonminimal coefficient sensitivities are placed

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

Consistency checks: Approach is consistent with the OPE and Ward identities

Lorentz- and CPT-violating effects on PDFs deduced

Estimated limits for minimal spin-independent coefficients are improved and first determination of nonminimal coefficient sensitivities are placed

Many new experimental opportunities to search for Lorentz and CPT violation in DIS

A framework has been developed for studying quark-sector Lorentz violation in hadronic processes using the SME

Factorization at the parton level for DIS and the Drell-Yan process

Consistency checks: Approach is consistent with the OPE and Ward identities

Lorentz- and CPT-violating effects on PDFs deduced

Estimated limits for minimal spin-independent coefficients are improved and first determination of nonminimal coefficient sensitivities are placed

Many new experimental opportunities to search for Lorentz and CPT violation in DIS

#### Thank you!