

High energy physics ZEUS

ZAF Meeting

Inclusive jet production in DIS using ZEUS data and NNLO QCD analysis in precision determination of $\alpha_{\rm s}(M_{\rm Z})$

PhD project plan update

Florian Lorkowski

January 21, 2020

Goal: precision analysis of inclusive jet production

- ▶ Low and high *Q*² (10 − 20 000 GeV²)
- Sinistra and EM for electron reconstruction
- Massive jets using kt algorithm

Electron:

- ▶ Low Q² (≈ 10 − 1 000 GeV²)
 - Sinistra reconstruction
 - Electron method for kinematics
- ▶ High Q² (≈ 100 20 000 GeV²)
 - EM reconstruction
 - Double angle method for kinematics

Electron:

- ▶ Low Q² (≈ 10 − 1 000 GeV²)
 - Sinistra reconstruction
 - Electron method for kinematics
- ▶ High Q² (≈ 100 20 000 GeV²)
 - EM reconstruction
 - Double angle method for kinematics

Jets:

ZUFOs and CAL

Phase space:

- ► Momentum transfer: Low Q^2 : 10 GeV² < Q^2 < 1000 GeV² High Q^2 : Q^2 > 125 GeV²
- Inelasticity: 0.2 < y < 0.6,^{1,2,3,4} y_{el} < 0.95^{1,4}

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017) ⁵ PhD thesis F. Januschek (2011)

Florian Lorkowski

Phase space:

- ► Momentum transfer: Low Q^2 : 10 GeV² < Q^2 < 1000 GeV² High Q^2 : Q^2 > 125 GeV²
- Inelasticity: 0.2 < y < 0.6,^{1,2,3,4} y_{el} < 0.95^{1,4}

Triggers:

- EVTake, MVDTake (for ZUFOs), POLTake
- FLT, SLT and TLT to be selected

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017) ⁵ PhD thesis F. Januschek (2011)

Florian Lorkowsk

Phase space:

- ► Momentum transfer: Low Q^2 : 10 GeV² < Q^2 < 1000 GeV² High Q^2 : Q^2 > 125 GeV²
- Inelasticity: 0.2 < y < 0.6,^{1,2,3,4} y_{el} < 0.95^{1,4}

Triggers:

- EVTake, MVDTake (for ZUFOs), POLTake
- FLT, SLT and TLT to be selected

Background reduction:

- Interaction vertex position: |z| < 30 cm^{2,5}
- Longitudinal momentum imbalance: Low Q^2 : 42 GeV $< E p_z < 65$ GeV ²
 - High Q^2 : 38 GeV < $E p_z$ < 65 GeV ^{1,3,4,5}
- Remove elastic QED Compton scattering (not well described by MC) ^{1,2,3,4,5}

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011)	³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017)	⁵ PhD thesis F. Januschek (2011)

Electron kinematics:

- Probability Sinistra > 0.9^{1,2,3,4}
 Probability EM > 0.001⁵
- Electron energy > 10 GeV ^{1,2,3,4,5}
- ▶ Matching track (reject misidentified photons, for high Q²) ^{1,3,4,5}
- Isolation (reject misidentified photons/hadrons) ^{1,2,3,4,5}

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017) ⁵ PhD thesis F. Januschek (2011)

Iorian Lorkowski Inclusiv

ive jet production and NNLO QCD analysis

0-01-21

4 / 6

Electron kinematics:

- Probability Sinistra > 0.9^{1,2,3,4}
 Probability EM > 0.001⁵
- Electron energy > 10 GeV ^{1,2,3,4,5}
- Matching track (reject misidentified photons, for high Q²) ^{1,3,4,5}
- Isolation (reject misidentified photons/hadrons) ^{1,2,3,4,5}

Geometry (reject electrons in imperfect detector regions): ^{1,2,3,4,5}

- RCAL chimney
- Super crack
- RCAL radius
- ¹ PhD thesis J. Behr (2010) ³ PhD the ² PhD thesis H. Perrey (2011) ⁴ PhD the

³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017) ⁵ PhD thesis F. Januschek (2011)

Validate primary vertex: 1,2,3,4,5

- At least one track which has:
- Transverse momentum: p_T > 0.2 GeV
- Passed through at least three CTD superlayers

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis D. Lontkovskyi (2015) ⁴ PhD thesis I. Makarenko (2017) ⁵ PhD thesis F. Januschek (2011)

Florian Lorkowski

clusive jet production and NNLO QCD analysis

20-01-21

5/6

Validate primary vertex: 1,2,3,4,5

- At least one track which has:
- Transverse momentum: p_T > 0.2 GeV
- Passed through at least three CTD superlayers

Other:

- ► Validity of QED predictions: y(1 x)² > 0.004^{1,3,4,5}
- ► Transverse momentum balance: $\frac{P_{T}}{\sqrt{E_{T}}} < 2.5\sqrt{GeV}^{1,3,4}$
- Projection of hadronic scattering angle on FCAL (not well described by MC) ^{1,3,4,5}
- ¹ PhD thesis J. Behr (2010)
 ³ PhD thesis D. Lontkovskyi (2015)
 ⁵ PhD thesis F. Januschek (2011)

 ² PhD thesis H. Perrey (2011)
 ⁴ PhD thesis I. Makarenko (2017)

Jets: 1,2,3,4

- Transverse momentum: p_T^{Breit} > 8 GeV
 p_T^{lab} > 3 GeV
- Pseudorapidity: $-1 < \eta^{lab} < 2.5$
- Electron jet distance: $(\Delta \phi)^2 + (\Delta \eta)^2 > 1$ (reject misidentified DIS electron)
- Jet veto: (reject misidentified photons) Low Q²: No jet with η^{lab} < -2² High Q²: No jet with η^{lab} < -1^{1,3,4}

¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis D. Lontkovskyi (2015)

⁴ PhD thesis I. Makarenko (2017)

Jets: 1,2,3,4

- Transverse momentum: p_T^{Breit} > 8 GeV
 p_T^{lab} > 3 GeV
- Pseudorapidity: $-1 < \eta^{lab} < 2.5$
- Electron jet distance: $(\Delta \phi)^2 + (\Delta \eta)^2 > 1$ (reject misidentified DIS electron)
- Jet veto: (reject misidentified photons) Low Q²: No jet with η^{lab} < -2² High Q²: No jet with η^{lab} < -1^{1,3,4}

CAL cells:

- Minimum energy per cell (different for electromagnetic and hadronic cells) ^{1,3}
- Difference of two readouts per cell < 90% ^{1,2,3}
- ¹ PhD thesis J. Behr (2010) ² PhD thesis H. Perrey (2011) ³ PhD thesis I. Makarenko (2017)