Kinematic Fits in the Leptonic Channel

Benedikt Mura Hamburg SUSY Meeting 26.11.2009

SPONSORED BY

Benchmarkpoint & Cascade

mSUGRA Parameters

	SPS1a
m_0	100 GeV
$m_{1/2}$	250 <i>GeV</i>
A_0	-100 <i>GeV</i>
$\tan(\beta)$	10
μ	>0

Particle	Mass [GeV]	ΔM to next [GeV]
\tilde{g}	606	39 / 44
$ ilde{q}_L$	567 (ud) / 562 (cs)	387 / 382
$ ilde{\chi}^0_2$	180	37
\tilde{l}_R^\pm	143	46
$ ilde{\chi}^0_1$	97	

X-section: ~36 pb @ 14 TeV

Leptonic Cascade

- 2 jets + 2x2 OSSF leptons
- 16/32 possible combinations
- $-BR = 1.7*10^{-3}$

Likelihood Definition

- Hypotheses close to true masses fit on average better
- Use events' combined fit probability to quantify how good the assumed masses fit.

$$\log \mathcal{P} = \sum_{i}^{N} \log P(\chi_{i}^{2})$$

$$P_{i} = P_{\text{cut}} \text{ for } P_{i} < P_{\text{cut}}$$

- Cut-off to avoid numerical fluctutations
- $-P_{cut} = 0.001$

Mass Scan

- Scan over possible mass values
 - Test each mass hypothesis with the fit on each event
 - Find best fitting hypothesis

- Visualization in 2D mass plane:
 - Fix neutralino and LSP masses to true values
 - Vary squark & slepton masses
- Shift of maximum w.r.t true masses

Effect of Background

 Effect becomes smaller when increasing P_{cut}

n(j) [GeV]

,

Confidence Intervals?!

- Closer look at the maximum
 - Boundaries are given by ΔL=3
 - Should correspond to 1σ if everything correct

- How to interpret this?
- Need finer scan

