UNIVERSITY OF -
LIVERPOOL sy HSF S@

Introduction to the
Scikit-HEP project

Eduardo Rodrigues

University of Liverpool

HEP Seminar, DESY, 3" March 2020

https://www.liverpool.ac.uk/
http://lhcb.web.cern.ch/lhcb/
https://hepsoftwarefoundation.org/
https://scikit-hep.org/

Outline

Data analysis in High Energy Physics (HEP) has evolved
considerably in recent years. In particular, the role of
Python has been gaining much momentum, sharing at
present the show with C++ as a language of choice.

To support and enhance the usage of Python across the
community, the HEP Software Foundation created a
PyHEP - "Python in HEP" - working group and has been
organising PyHEP workshops since 2018. Moreover,
many projects and analysis packages have seen the light,
which are now providing interesting, modern and
alternative ways to perform analysis, in Python. In short, a
global community effort is only getting stronger. | have
been intimately involved in all these endeavours, and will
provide an overview of the landscape. | will also detail the
Scikit-HEP project | started in late 2016 with a few
colleagues from various backgrounds and domains of
expertise. Scikit-HEP is a community-driven and
community-oriented project with the aim of providing
Particle Physics at large with an ecosystem for data
analysis in Python. It has developed considerably in the
past year and is now part of the official software stack of
experiments such as Belle Il and KM3NeT.

O Challenges in data analysis in High Energy Physics (HEP)
O The reign of Python

0 Community efforts — HSF, PyHEP

O The Scikit-HEP project

0 Other community software projects

O Final remarks

Challenges in data analysis
in High Energy Physics

0 “Big Data” projects

O Computing & software challenges

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 3/58

A "Big Data project" — HL-LHC (High Luminosity LHC)

3.0E+34

Luminosity [cm2s]

1.0E+34

0.0E+00 -l p— — ‘ — — ‘ ‘
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

6.0E+34 ——
Ty o 7 S L

4.0E+34

X %, ¢ A .

........

.................

e Peak luminosity

.......

.......

—Integrated luminosity

Future data volumes

A

X22

Year

o — — 3500
' | -~ 3000
--------------- * .. .".‘:'. o--0f-0
' B ‘ | o
o 2500 £
~~~~~~~ -4 .
| : > +18 years:
! 'a
2000 ©
: ' £
- @ E
I -
- 1500 =
1 2
.' H L e Y 4 o B e - SR FEREIRY TR | E
; 1000 g,n
£ +11 years: | x8
””””””””””””””””””””””””””” - 500
0 Now “150 fb"

Beautification of https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/images/optimistic-nominal-19.png taken from Ben Krikler

Eduardo Rodrigues

HEP Seminar, DESY, 3 March 2020

4/58


https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/images/optimistic-nominal-19.png

A n O t h er n B | g Data p rOJ eCt" — S KA m% gggﬁ}i Eniilsl_ecv)vilt\hﬂ:irwzgslAaSeiiIo telescope

Minh Huynh, CHEP 2019

Squa I‘e Ki lom eter Array The Square Kilometre Array Computing

@ sDP headline design numbers*

i
* ~800 GByte/s INGEST (in total), from Central Signal Processor
A
.
* Data set up to 15 PBytes
Temporar * 100PBytes total distributed buffer
ily store /
* 250 PFLOPS total peak
e 10% efficiency assumed

> 600 PB per year for around 50 years
(up to) 2 PetaByte per day of Science Data Products = 30 Exabytes of data

= “Exascale computing”

Preserve
and ship

*all numbers subject to change (Totals for both SKA-Low and SKA-Mid SDP)

ISP USg WOy udXe) apIIS

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 5/58


https://www.skatelescope.org/

Computing & software challenges

U HEP has made a vast investment in software

- Estimated to be around 50M lines of C++
- It would cost $500M to develop commercially

U This software is a critical part of our physics production pipeline

U LHC experiments use about 1M CPU cores per hour per day:
about 1 TB of data with 100 PB of data transfers per year

- We are in the Exabyte era already

U Future physics programmes pose significant challenges _
- Factor of 10-100 more computing resources needed in the HL-LHC

Eduardo Rodrigues

CPU Resources [kHS06*1000]

100

B D [es}
o o [=]

N
o

ATLAS Preliminary

= Resource needs
(2017 Computing maodel)

— Flat budget model
(+20%year)

Run 2

B ) I If\ L 1 | L 1 3 |I
2018 2020 2022 2024

L 1 | 1 1
2026

1 | 1 1
2028

WLCG: the international collaboration
to distribute and analyse LHC data

Tier-2 sites
(about 160)

Tier-1 sites

" € %
r"é— 'é’

‘E 0 &

‘&

r’é—) -
; &

¢
& E

Year )ESY, 3rd March 2020

7

WLCGG

Worldwide LHG Computing Grid

167 sites,
42 countries

r

~1M CPU cores

~1 EB of storage

A

> 2 million jobe/day

10-100 Gb links

6/58



Technology evolution

U Moore’s law continues but doubling time is lengthening
(is the observation that the number of transistors in a
dense integrated circuit doubles about every two year)

U Clock speed scaling failed around 2006

U Memory access times are now ~100s of clock cycles
Poor data layouts are catastrophic for software
performance

U HEP also needs to deal with non-CPU architectures
- GPUs, FPGASs, TPUs

U This makes it more complex to write (efficient) code

Eduardo Rodrigues

HEP Seminar, DESY, 3 March 2020

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)
Typical Power

1 (Watts)

Number of
Logical Cores

I I I
80 1990

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

-
. ' .

10° —-g---q ------------ R SR TR RIS e e -
|
9

1970 1 2000 2010 2020

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

7158


https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Tackling the challenges for (offline) data analysis — possible routes

U Lots of data?
= Look at what the Big Data community is doing

U Evolution of computing resources won’t be enough to digest all data
= Use resources as efficiently as possible

Words from an LHCb 2018 Analysis Survey Report

Train 154

‘ [“" 3 . t Strédm "
Fine S[“I]I)”]i h a a l” KA

Bug
® . Analyse

Ihsplms( uh
Need “vnaly51s(§é;

locun\ggnt ()1 “MOI‘B 5
[est R CO

Think
Software "
[ool e :

U Physicists want to minimise the “time to insight”. But coding takes a fair share of one’s time, and is error-prone.

= Adopt open-source best practices, popular and easy languages

= This talk will focus on offline data analysis tools, hence post trigger processing

(it will not discuss ROQT either)

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020

8/58


https://cds.cern.ch/record/2644003

The reign of Python

U Popularity has never been so high
- in Data Science

- in Particle Physics

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 9/58



PopularitY of Programming Languages (PyPL)

U Popularity based on how often language tutorials are searched for — Python is the big winner!

- Data from Google Trends

- Log scale!
PYPL PopularitY of Programming Language

1 Dec 2019 — C/C++
Python: 29.5%

— Java

10%

1 Dec 2019
C/C++: 5.9%

Worldwide, Python is the most popular
language, Python grew the most in the last 5
years (19.0%) and Java lost the most (-6.7%)

See
http://pyplaithub.io/PYPLINtwI

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020

10/58


http://pypl.github.io/PYPL.html

PopularitY of Programming Languages for Machine Learning

O Popularity again from Google Trends data

100 1 = Machine Learning Python
= Machine Learning C
n —— Machine Learning R
g 80 4 = Machine Learning Java
= —— Machine Learning Matlab
w
Is)
o
3
- 60
5]
Z
ks
a 40
o
(=}
)
2
-
o
2 20 ‘w
WAV
Il.u*l_ VoL On '”‘ nhie

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 11/58



Why Python for scientific research ?

Why Python e Interoperability with other languages

o  Bindings to C++, fortran, etc

fo r SCI e ntlﬁc o  We can continue using existing tools (if wanted)
Fresea I’Ch? e Perfect for exploratory work

o Nocompiling

o Little boilerplate code

o E.g. Jupyter notebooks (though this is no longer
python-only)

U Very popular, with large and active community ‘
o “Open-source” by default

e Package ecosystem =

o “Batteriesincluded” so standard library provides many g

_ _ functions: argparse, globbing, regular expressions, URL c;D_

O Ecosystem built atop NumPy and SciPy -
requests, math 3

O Open source — FOSS has proven its worth! o Package manager gives access to huge community-driven ?DJ
ecosystem =

Za)

=

o)

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 12/58



HEP data analysis ... in C++ or Python ?

Surveys from the LHCb experiment

O Python and C++ equally used among analysts

- Trend seen in our LHCb survey for the ROOT User’s Workshop in 2018
- And in the LHCb 2018 Analysis Survey Report

O Conclusion clearly even stronger if discussing
analysis tools independent of ROOT

&

Which ROOT interface are you using mostly?

multiple answers were possible

ROOT .C macros
(interpreted or compiled)

ROOT from Python
(PyROOT, rootpy, root_numpy, uproot...)

50

46

ROOT graphical interface
(TBrowser...)

ROOTbook (ROOT in Jupyter)

C++ programs linked to ROOT

* Python scripts close second to ROOT .C macros
* ROOT .C macros can compiled

* Few people use ROOT in Jupyter (but those who do seem to like it a lot)
* Grapbhical interfaces are frequently used

Hans Dembinski | MPIK Heidelberg

1.0 4

mm C/C++

| == Python
BN jupyter

(unknown)

mam (other)

1 mmm HTML/CSS/JS

w Java

mm TeX/LaTeX

== Go

T ™= VHDL/NVerilog

- R

o
-]

CMS study

o
o

O Most users code outside of CMSSW®

iIs now Python
- Python has been eating the share of C/C++

e
»

B Fortran
. Matlab

T = julia

= Mathematica

fraction of non-fork repositories

e
N

0.0-

Jan 2010
May 2010
Jan 2011
May 2011
Sep 2011
Jan 2012

) CMS software framework

May 2012

Sep 2012

GitHub users who forked CMSSW

Jan 2013
May 2013
Sep 2013
Jan 2014
May 2014
Sep 2014
Jan 2015
May 2015
Sep 2015
Jan 2016
May 2016
Sep 2016
Jan 2017
May 2017
Sep 2017
Jan 2018
May 2018
Sep 2018
Jan 2019
May 2019
Sep 2019

Eduardo Rodrigues HEP !

Analysis by Jim Pivarski

810z "das ‘onsleres ‘doysyiom ,siasn LOOY

‘gDOHT wol yoeqpasd 1asn ‘psulquag sueH

wouj uayel

13/58


https://indico.cern.ch/event/697389/
https://cds.cern.ch/record/2638352
https://cds.cern.ch/record/2644003

Why do particle physicists use Python ?

U Result of PyHEP 2018 pre-workshop questionnaire
Stewart, Graeme. (2018, July). PyHEP - Questionnaire and Discussion. Zenodo. http://doi.org/10.5281/zen0do0.1419157

MOtivation to use Python

Important

Motivation to %age
Developm_erjt speed and 40 80%
efficiency
Availability of other software 26 50%
packages
Interface language 20 40%
Machine learning packages 19 38%
| just like it 12 24%
They make me do it... 5 10%

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 14/58


https://indico.cern.ch/event/694818/
http://doi.org/10.5281/zenodo.1419157

Focus of this talk — (offline) analysis software in Python

ANALYSIS TOOLS AND METHODS

Analysis ecosystems focused on HEP m OT

Data Analysis Framework

WoJj uayer

HEP-specific but flexible across
experiments/analyses

Abstraction
# shareability, usability, reproducibility
] (€SN

-
=.
=
o
n
>
o
>
o
>
o
'3
4
=
Y
o
o
o
=)

Speed is important
interactivity, collaboration

Parallelization

Web-based interfaces



https://indico.cern.ch/event/773049/contributions/3581351/
http://chep2019.org/

Focus of this talk — (offline) analysis software in Python

ANALYSIS TOOLS AND METHODS

How can the analysis description be:

WoJj uayer

Concise Shareable

Flexible
Complete Quick

Ben Krikler (Uni of Bristol)

&Y
- ¥

Collaboration

Iy 9 3o.IL,, ‘UBUeURYS Elelyd

Reproducibility Interoperability Sustainability

Eduardo Rodrigues (Uni of Cincinnati)

0O
I
m
o
N
o
=
(o]
0O
o
>
juriy
®
=
®
>
(@]
D
>
Q.
@
=
[@F
o
>
c
(]
—
=
=
P_).
4?
o
Z
o
<
N
o
=
©

SISA[euy soIsAud -

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020


https://indico.cern.ch/event/773049/contributions/3581351/
http://chep2019.org/

Community efforts

U The HEP Software Foundation (HSF)
U HSF PyHEP - “Python in HEP” Working Group
U PyHEP series of workshops

U Community projects towards a HEP Python ecosystem

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 17/58



The HEP Software Foundation (HSF)

The goal of the HEP Software Foundation (HSF) is to

facilitate coordination and common efforts in software and computing across HEP in general
A Our philosophy is bottom up, a.k.a. Do-ocracy
Q Also work in common with like-minded organisations in other science disciplines

Founded in 2014, explicitly to address current and future
computing & software challenges in common

Finalised in Dec. 2017 a Community White Paper (CWP)
“A Roadmap for HEP Software and Computing R&D for the 2020s”

d  Almost all major domains of HEP Software and Computing covered
d Large support for the document from the community (> 300 authors from >120 institutions)
O Comput Softw Big Sci (2019) 3, 7; arXiv:1712.06982

The CWP was a major accomplishment made by the community, with HSF “coordination”
But it was a milestone, not a final step
HSF activities post-CWP are very diverse ...


http://hepsoftwarefoundation.org/
https://doi.org/10.1007/s41781-018-0018-8
https://arxiv.org/abs/1712.06982

HSF - "facilitate coordination and common efforts" Gordon Watts, ACAT 2019

H F Experiments

€ -
~ 2t Fermilab
HEP Software E BROOKHAVEN
Foundation
JefferfonLab
Individuals G. Watts (UW/Seattle) Labs 23

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 19/58



HSF —working groups, activities & events HE F

INJICD)

Activities~ Working Groups ~

Season of Docs Data An alysis Home Create event ~ Room booking

Google Summer of Code Detector Simulation S

Licensing Frameworks HEP Software Foundation

Quantum Computing Physics Generators

Reviews |_PyHEP Python in HEP '

Software Forum Reconstruction and Software Triggers p Jeekymestnes 3

Visualisation Software Developer Tools and Packaging | e _
Training Working groups

Software Forum

Training

U The HSF also acts as an umbrella organisation for participation in the Google Summer of Code programme

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 20/58


https://hepsoftwarefoundation.org/what_are_activities.html
https://hepsoftwarefoundation.org/what_are_WGs.html
https://indico.cern.ch/category/5816/
https://hepsoftwarefoundation.org/

HSF — PyHEP ("Python in HEP") Working Group

The PyHEP working group brings together a community of developers and users of Python in Particle Physics, with the aim of improving the
sharing of knowledge and expertise. It embraces the broad community, from HEP to the Astroparticle and Intensity Frontier communities.

The group is currently coordinated by Ben Krikler (CMS, LZ), Eduardo Rodrigues (LHCb) and Jim Pivarski (CMS). All coordinators can be reached
via hsf-pyhep-organisation@googlegroups.com.

Getting Involved

Everyone is welcome to join the community and participate by means of the following:

s Gitter channel PyHEP for any informal exchanges.

e GitHub repository of resources, e.g., Python libraries of interest to Particle Physics.
¢ Twitter Handle: #PyHEP

Extra Gitter channels have been created by and for the benefit of the community:

e PyHEP-newcomers for newcomers support (very low entry threshold).
¢ PyHEP-histogramming for discussions around histogramming.
- * mpl-hep for Matplotlib proposals related to Particle Physics.

r
|
{

If you still need a motivation ;-) :

U Python has become a first-class language in HEP

U And is the lingua franca for data science and machine learning
Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 21/58


https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://hepsoftwarefoundation.org/workinggroups/pyhep.html

PyHEP workshops —a new series of workshops

The PyHEP workshops are a series of workshops initiated and supported by the HEP Software
Foundation (HSF) with the aim to provide an environment to discuss and promote the usage of Python
in the HEP community at large. Further information is given on the PyHEP WG website.

U Community diversity — great to see such a very diverse set of participants !

PyHEP 2018 PyHEP 2019

Hch ATLAS

NEXT
CLOUD
CMS and LUXZE
DUNE & LHCb
XENON
MPD
PANDA
IT & ATLAS
XENON Dark
SHiP
ROOT
NOvA

Belle 11 LHCh IT Group / Research Software Engineer at a lab or university

Hyper-K/T2K
STAR

XENON
Beam Dynamics Simulation Developer
DUNE

ATLAS
Nova

LZ

CMS

IT Group at a lab or university

(Both pie charts taken from the pre-workshop questionnaires)

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 22/58


https://indico.cern.ch/event/694818/page/14515-surveys
https://indico.cern.ch/event/694818/
https://indico.cern.ch/event/833895/page/18720-surveys
https://indico.cern.ch/e/PyHEP2019

PyHEP series of workshops

PyHEP 2018

Sofia, Bulgaria

PyHEP 2019

Abingdon, U.K.

ARy

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 23/58


https://indico.cern.ch/event/694818/
https://indico.cern.ch/e/PyHEP2019

PyHEP series of workshops — PyHEP 2020

PyHEP 2020

3™ Workshop on Python in High Energy Physics

j\l\

# Find all strange baryons ‘ c*tau > 1 cm

PyHEP 2020 j i

- To be held in Austin (Texas), U.S.A., in July 11-13

- Next to SciPy 2020 conference, to enhance cross-comgunity exchange . . , . § ﬂ,

- First official announcement email sent out on Feb. 25 ‘ - - 4
- See also Indico agenda

mmkawammwwwmu-mmm
to discuss and promote the use of Python in the HEP community.

PYHEP 2020 will be held on the University of Texas at Austin campus, right next door to SciPy 2020,

the primary conference for the scientific Python community at large. SciPy 2020 will be held on
July 6-12, making it easy to attend both.

The PyHEP workshop will include

:mfrognt:\odau:dmdomain A I L

+ hands-on tutorials .

-plenty of time for discussion Python skill levels
e E] Orers commnes are welcome!

e
g e e

= e s e e
#PyHEP2020 1S EDusnssreor ——
https://cern.ch/pyhep2020 @ hep LIVERPOOL P e

i e

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 24/58


https://indico.cern.ch/e/PyHEP2020
https://indico.cern.ch/e/PyHEP2020

Community projects towards a HEP Python ecosystem for data analysis

Q Citing Gordon Watts (ACAT 2019) — how can we tackle these issues?

- Increased LHC dataset sizes and CPU requirements

- Flat budgets & stable or decreasing staffing

- New software tools and communities inside and outside HEP
- High turn-over inside HEP

- Educational responsibility

Various projects have seen the light:
Q Coffea
(Note that much of this is not HEP specific ;-))
O FAST-HEP

Q Scikit-HEP (1t one of the gang)
O zfit

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 25/58



The Scikit-HEP project

U Motivation for such a community project

O Whirlwind tour of packages

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 26/58



How’s the Python scientific ecosystem like, outside HEP?

Domain-specific @

Python’s

Scientific

stack

Eduardo Rodrigues

astropy

| StotsModlels
Statistics i Puthon

i : . . —.

IPIyl:

IPython

HEP Seminar, DESY, 3 March 2020

What about
HEP ...?

Jake VanderPlas,

The Unexpected Effectiveness
of Python in Science,

PyCon 2017

27/58



Scikit-HEP project — the grand picture

Scikit

e

Eduardo Rodrigues

-

Collaboration

U Create an ecosystem for particle physics data analysis in Python

Q Initiative to improve the interoperability between HEP tools
and the scientific ecosystem in Python

- Expand the typical teetkit toolset for particle physicists
- Set common APIs and definitions to ease “cross-talk”

U Promote high-standards, well documented and easily installable packages

U Initiative to build a community of developers and users

- Community-driven and community-oriented project
- Open forum to discuss

U Effort to improve discoverability of (domain-specific) relevant tools

of

e
Reproducibility Interoperability Sustainability
HEP Seminar, DESY, 34 March 2020 28/58

¥



Scikit-HEP project — 5 grand "pillars" embracing all major topics

Eduardo Rodrigues

Scikit-HEP Scikit-HEP on GitHub

Scikit-HEP project - welcome!

] L
Sc1k1t The Scikit-HEP project is a community-driven and community-oriented project with the aim of providing
Particle Physics at large with an ecosystem for data analysis in Python. The project started in Autumn
HEP 2016 and is in full swing.

It is not just about providing core and common tools for the community. It is also about improving the
interoperability between HEP tools and the scientific ecosystem in Python, and about improving on
discoverability of utility packages and projects.

Home

Getting in touch For what concerns the project grand structure, it should be seen as a toolset rather than a toolkit. The
Documentation project defines a set of five pillars, which are seen to embrace all major topics involved in a physicist's
Who uses Scikit-HEP? work. These are:

Affilated packages « Datasets: data in various sources, such as ROOT, Numpy/Pandas, databases, wrapped in a

Miscellaneous resources common interface.

20 * Aggregations: e.g. histograms that summarize or project a dataset.

Al - Modeling: data models and fitting utilities.

Supported Python Versions = Simulation: wrappers for Monte Carlo engines and other generators of simulated data.

= Visualization: interface to graphics engines, from ROOT and Matplotlib to even beyond.

This site uses Just the Docs, a TOOISet paCkages

documentation theme for Jekyll.

HEP Seminar, DESY, 3 March 2020

29/58



Scikit-HEP project — overview of (most of the) packages

Units and constants

Particles and decays

https://scikit-hep.org/

DecayLanguage

Histogranuming Event processing Statistics tools and utilities

Fitting

Visualization

vegascope

Simulation

Interface to HEP libraries

Eduardo Rodrigues

=

There are other packages: test data, tutorials, org stats, etc.
(and some which tend to now be superseded, hence deprecated ...)

HEP Seminar, DESY, 3 March 2020

Data manipulation™sag interoperability

uproot-methods

uproot

30/58


https://scikit-hep.org/

Scikit-HEP project — overview of (most of the) packages

Units and constants |

Particles and decays

NEW PACKAGE

NEW PACKAGE

DecayLanguage

YW PACKAGE

https://scikit-

hep.org/

= =15'release
NEW PACKAGE st cHEP 2018

Histogranuming

Event processing

awloward-array

NEW PACKAGE

=

Eduardo Rodrigues

NEW PACKAGE

NEW PACKAGE

Statistics tools and utilities

pyht

Fitting

Visualization

W PACKAGE ™

NEW PACKAGE

There are other packages: test data, tutorials, org stats, etc.
(and some which tend to now be superseded, hence deprecated ...)

HEP Seminar, DESY, 3 March 2020

Simulation

NEW PACKAGE

Interface to HEP libraries

Data manipulation

uproot-methods

upro ot

NEW PACKAGE

31/58


https://scikit-hep.org/

Who uses (some of) Scikit-HEP ? Experiment collaborations

O Groups, other projects, HEP experiments E

U Links are important, Bellell - the Belle Il experiment at KEK, Japan.
especially if they strengthen the overall ecosystem TS

0 Community adoption going up < we’re on the right path ;-) e

U Rewarding to collaborate / work with / interact with CMS - the Compact Muon Solenoid experiment at CERN, Switzerland.
many communities Q KM3NeT

- Responsibility and importance of sustainability ...

KM3NeT - the Kilometre Cube Neutrino Telescope, an Astroparticle Physics European research

. infrastructure located in the Mediterranean Sea.
Software projects

Phenomenology projects

. IS

Coffea - a prototype Analysis System incorporating Scikit-HEP packages to provide a lightweight,
scalable, portable, and user-friendly interface for columnar analysis of HEP data. Some of the sub- flavio - flavour physics phenomenology in the Standard Model and beyond.
packages of Coffea may become Scikit-HEP packages as development continues.

7Fit

The zfit project - it provides a model fitting library based on TensorFlow and optimised for simple and

direct manipulation of probability density functions.
Eu rch 2020 32/58



Data manipulation and interoperability — uproot "suite of packages"

U (Does it still need an intro ;-)?)

Q Trivially and Python-ically read ROOT files

ROOT I/O0

U Need only NumPy, no ROOT, using this pure I/O library!
y e J P y ~in pure Python and Numpy

U Design and dependencies:

uproot-methods is Arllelll s:sl sc:ilts . Pythonic mix-ins
home to physics T y I IFI) uproot is the layer
methods read from most users interact | for non-1/O ROOT classes
ROOT files. uproot / with.

uproot-methods

awkward-array
awkward-array for
array manipulation numpy

beyond numpy with
Jagged and Lazy
Arrays.

1z4

cachetools

0 Write ROOT files: newest development, limited scope = write Ttree, histograms and a couple more classes only
- See talk at PyHEP 2019 workshop

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 33/58


https://indico.cern.ch/event/833895/contributions/3577892/attachments/1927752/3191883/uproot-pyhep.pdf
https://indico.cern.ch/e/PyHEP2019
https://github.com/scikit-hep/uproot

Intermezzo — walit, it’s Python, it must be slow!

Q0 NOPE !

“The lack of per-event processing is why reading in uproot and processing data with awkward-array

can be fast, despite being written in Python.”

RAM memory loading and computing (jagged) pz = pt*sinh(eta) time to complete
1000 MB 100 sec

PyROOT load and compute e—=

1 11 Illll

———=Python list of lists of dicts JaggedArray compute in Python for loops e——

¢+——eroot_numpy's array of arrays :' 10 sec
¢+———= Pythonlist of lists of __slots__ classes .
100 MB | root_numpy compute in loop over ufuncs — ]
C Python list of lists of dicts in Python for Ioops>
C Python list of lists of __slots__ classes in Python for loops — 1sec

root_numpy load e——=

—e serialized JSON text (for reference)

1 111

——e std::vector<std::vector<struct>>
ROOT RDataFrame load and compute e———¢
b JaggedArray of Table of pt, eta, phi ROOT TTreeReader load and compute «—=4 0.1 sec

10MB £ ROOT TBranch::GetEntry load and compute e—_ %« [0ad
- uproot load e—— 3 ufine
= JaggedArray compute as Numpy-like ufunc :7_"
B JaggedArray compute in Numba-accelerated Python for loops
3MB - — 0.01 sec

See https://github.com/scikit-hep/uproot#jagged-array-performance

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 34/58


https://github.com/scikit-hep/uproot#jagged-array-performance

Intermezzo — walit, it’s Python, it must be slow!

U Much is thanks to building atop NumPy:

o B T :
il i/ 11

> Ahigh level interface to express what you want to do

> Encourages you to work with entire arrays simultaneously

numpy

px = numpy.random.normal(@, 10t
py numpy.random.normal(@, 10

pt = numpy.sqrt(px++2
range(len(px)):

pt.append(numpy.sqrt(px[i]++ py[il++2))
> O(N) python instructions

> O(1) python instructions
> O(N) heavily optimised instructions

- : .
Single (python) Instruction Multiple Data S G Bl e o eta) & (cta ¥

> Simplifies code and encourages the use of vectorisation

> This is essential to efficiently use modern CPUs and GPUs

christopher.burr@cern.ch o The Python ecosystem in HEP @ LHCb UK Student Meeting

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 35/58



Event processing — awkward-array package

U Provide a way to analyse variable-length and tree-like data in Python,
by extending NumPy's idioms from flat arrays to arrays of data structures

U Pure Python+NumPy library for manipulating complex data structures even if they

- Contain variable-length lists (jagged/ragged)

- Are deeply nested (record structure)

- Have different data types in the same list (heterogeneous)
- Are not contiguous in memory

- Etc.

Manipulate arrays
of complex data structures
as easily as NumPy

O This is all very relevant and important for HEP applications !

pip install awkward # maybe with sudo or --user, or in virtualenv
pip install awkward-numba # optional: integration with and optimization by Numba

U Package being re-implemented in C++, with a simpler interface and less limitations
- Major endeavour

O Work-in-progress, see https://qgithub.com/scikit-hep/awkward-1.0 ...

U BTW, uproot 4 will be re-engine based on awkward-1.0

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 36/58


https://github.com/scikit-hep/awkward-1.0
https://github.com/scikit-hep/awkward-array

Histogramming — boost-histogram package

O (pybind11) Python bindings for the C++14 Boost.Histogram library
(multi-dimensional templated header-only, designed by Hans Dembinski)

U A histogram is seen as collection of Axis objects and a storage
- Several types available, e.g. regular, circular, category

Regular axis Storage (

Static .
Design
Dynamic) €518
O e Close to B.H
® Pythonic
\\ Accumulator .

N int, double,
4 unlimited, ...

e Numpy ready

Speed

¢ 2-10x faster

o than Numpy
L Regular axis with Tlhess) sl
—1 l l l ®
axes | L ! ! 'TI log transform

Optional underflow Optional overflow

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020

Boos’uef—.-t\

istogram

Flexibility

e Composable
¢ O-copy
conversion

Distribution

* Pip wheels
e Conda-forge
e C++14 only

37/58


https://github.com/boostorg/histogram
https://github.com/scikit-hep/boost-histogram

Histogramming — looking ahead

O A fair amount of interest in the (HEP) community to develop a histogramming sub-ecosystem
that meets our requirements

QO Involves packages for core functionality such as filling, plotting, serialisation, and interoperability

U Interaction with popular fitting packages is also paramount

Core histogramming libraries boost-histogram ROOT
Universal adaptor Aghast
Front ends (plotting, etc) hist mpl-hep  physt others

Taken from Henry Schreiner,

IRIS-HEP talks

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020

38/58



Fitting — iminuit package

U Provides Python interface to the MINUIT2 C++ package (built on Cython)

O Minimises arbitrary functions and computes standard errors Python interface to the
- Uses HESSE (inverse of Hesse matrix) or MINOS (profile likelihood method) | MINUIT2 C++ package

0 Used as backend in many other HEP (e.qg. zfit) and non-HEP (e.g. astroparticle) packages
QO Binary wheels for all major platforms, supports for all Python versions; availability via conda-forge

0 Used interactively (Jupyter-friendly displays) to do advanced fits or for learning

O Example usage: FCN = 1.624E-22 Nealls = 36 (36 total)

EDM = 1.62E-22 (Goal: 1E-05) up = 1.0

from iminuit import Minui
uit 3 uit Valid Min.  Valid Param. Above EDM  Reached call limit

def f(x, vy, z): True True False False
return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2 Hesse failed Has cov. Accurate  Pos. def. Forced

. . False True True True False
m = Minuit (f)

. o Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed
m.migrad() # run optimiser

print (m.values) # {'x': 2,'y': 3,'z": 4} 0 x 20 10

1 y 30 10
m.hesse () # run covariance estimator 5 , 40 10
print (m.errors) # {'x': 1,'y': 1,"'z": 1}

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 39/58


https://github.com/scikit-hep/iminuit

Particles and decays — Particle package Ve,

farticle

O Pythonic interface to the Particle Data Group (PDG) particle data table and MC particle identification codes

d With many extra gOOdIeS from particle import Particle, PDGID

O Simple and natural APIs pid = PDGID(211)
pid

. . <PDGID: 211>
U Main classes for queries and look-ups:

- Particle
- PDGID
- Command-line queries also available

pid.is _meson

True

0 Powerful and flexible searches as 1-liners, e.g. Particle. from pdgid(415)

D3(2460)*
In [7]: from particle import Particle, SpinType

Particle.findall(lambda p: p.pdgid.is meson and p.pdgid.has charm and p.spin_type==SpinType.PseudoScalar)

out[7]: [<Particle: name="D+", pdgid=411, mass=1869.65 * @.05 MeV>,
<Particle: name="D-", pdgid=-411, mass=1869.65 t 0.05 MeV>,
<Particle: name="D®", pdgid=421, mass=1864.83 + ©.05 MeV>,
<Particle: name="D~@", pdgid=-421, mass=1864.83 t 0.05 MeV>,
<Particle: name="D(s)+", pdgid=431, mass=1968.34 + 0.07 MeV>,
<Particle: name="D(s)-", pdgid=-431, mass=1968.34 + 0.07 MeV>,
<Particle: name="eta(c)(1S)", pdgid=441, mass=2983.9 + 0.5 MeV>,
<Particle: name="B(c)+", pdgid=541, mass=6274.9 t 0.8 MeV>,
<Particle: name="B(c)-", pdgid=-541, mass=6274.9 + @.8 MeV>,
<Particle: name="eta(c)(2S)", pdgid=100441, mass=3637.6 t 1.2 MeV>]

Eduardo Rodrigues : : 40/58



http://pdg.lbl.gov/
http://pdg.lbl.gov/

Particles and decays — DecayLanguage package Deca

anguage
U Tools to parse decay files (aka .dec files) and programmatically manipulate them, query, display information

O Universal representation of particle decay chains

U Tools to translate decay amplitude models from AmpGen to GooFit, and manipulate them

U Parse, extract information and visualise a decay chain:

from decaylanguage import DecFileParser, DecayChainViewer

dfp = DecFileParser( 'Dst.dec") i

dfp.parse()

0.011738247

3.3392e-05

chain = dfp.build decay chains('D*+', stable particles=['D+', 'De'])
DecayChainViewer(chain)

U Represent a complex decay chain:

dml = DecayMode(©.0124, 'K 5@ pie', model="PHSP")
dm2 = DecayMode(®©.692, 'pi+ pi-')
dm3 = DecayMode(©.98823, 'gamma gamma')

dc = DecayChain('De’', {'D@':dml, 'K S@':dm2, ‘pie’':dm3})

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 41/58



Statistics tools and utilities — hepstats package

Q Statistical tools and utilities in Python, under development

O Currently implements two submodules:

- Modeling with the Bayesian block algorithm — improved binning determination, robust to statistical fluctuations
0.6

. NN Fine Binning
>>> import numpy as np 1 Bayesian Blocks
>>> import matplotlib.pyplot as plt 05 1

=>> from hepstats.modeling import bayesian_blocks

04
>>> data = np.random.laplace(size=10000)
>>> blocks = bayesian_blocks(data) 03 1
>>> plt.hist(data, bins=180@, label='Fine Binning', density=True, alpha=0.6) 0.2 -
>>> plt.hist(data, bins=blocks, label='Bayesian Blocks', histtype="'step', density=True, linewidth=2)

>>> plt.legend(loc=2) 01 -

0.0 -

-8 & 8
- Likelihood-based hypothesis tests, upper limit and confidence interval calculations

- Works with a fitting library providing models, likelihood, etc.
- Built on a common interface, used by zfit, and does not depend on a fitting backend

10 /
08 o

1-CL plot for the mean of a peak: [

0.6

—— Observed CL;

Upper limit on signal yield:

1-CL

...... --- Expected CLs — Median 0.4 /

mmm Expected CLs + 10
Expected CLs + 20

0.2 ; N,

0.0] == [ TSN

HEP Seminar, DESY, 3 March 2020 Mo me A, T e 42/58

Eduardo Rodrigues 0o

Nsig



Statistics tools and utilities — pyhf package

O Pure Python implementation of ROOT’s HistFactory,
widely used for binned measurements and searches

U Benefit that can on CPUs and GPUs, transparently
0 JSON specification that fully describes the HistFactory model

U Used for re-interpretation

Declarative binned likelihoods

fn,a| o, x) = H H Pois (na | vey (17, X))

ce channels b< bins,

H cx(ay] x)
XEX

.. constraint terms .
for “auxiliary measurements

~
Simultaneous measurement
of multiple channels

Primary Measurement:

e Multiple disjoint “channels” (e.g. event observables) each with multiple bins of
data

e Example parameter of interest: strength of physics signal, p

Auxiliary Measurements:

e Nuisance parameters (e.g. in-situ measurements of background samples)
e Systematic uncertainties (e.g. normalization, shape, luminosity)

Eduardo Rodrigues

HEP Seminar, DESY, 3 March 2020

Lf

differentiable

Zikelihoods
Performance
Efficient use of tensor computation makes pyht fast
CLs computation Data Size

XML+ROOT
ROOT

ROOT Workspace

pyhf
pyhf

pyhf gzip

0 10 20 30 40 10° 10! 10? 10° 10*
Performance (s) Size (KB)

Competitive with traditional C++ implementation — often faster

(Taken from M. Feickert’s CHEP 2019 poster)

43/58


https://root.cern/doc/master/group__HistFactory.html
https://github.com/scikit-hep/pyhf

Full analysis likelihoods published on HEPData

Q Test theory against LHC data New open release allows theorists to

O All that’s needed captured in a convenient format A
I I
Q “Full likelihoods in all their glory” on HEPData
- “While ATLAS had published likelihood scans ...
those did not expose the full complexity of the measurements”

Theory Likelihoods Data
b '-:: = "'1'“ ) - -l-—
w :_,- 1] S :ﬁ ey I.... !__F-'
:'_ - _‘._ X . . E 1 {
ol _ Interpretation p  Modeling |
b 'ﬂ:‘: ! M AMarentialie '
" b fry— |
Work done with
Explore ATLAS open likellhoods on the HEPData platform (Image: CERN)
U RooStats
What if you could test a new theory against LHC data? Better yet, what if the expert knowledge needed to do
D pyhf this was captured in a convenient format? This tall order is now on its way from the ATLAS collaboration, with

the first open release of full analysis likelihoods from an LHC experiment.

Taken from https://home.cern/news/news/knowledge-sharing/new-open-release-allows-theorists-explore-lhc-data-new-way

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 44/58


https://www.hepdata.net/

Simulation — pyhepmec packages

U HepMC3: a new rewrite of the C++ HepMC event record for MC generators

Python wrapper for the
| HepMC3 C++ library

U pyhepmc: Python wrapper for the HepMC3 C++ library
U Bindings built on pybind11
O Supports all Python versions

0 On PyPI as source distribution

U Development done with exchanges with the HepMC3 team
- ldeais to provide pyhepmc as the official bindings, included in the HepMC3 distribution

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 45/58


https://gitlab.cern.ch/hepmc/HepMC3
https://github.com/scikit-hep/pyhepmc
https://github.com/scikit-hep/pyhepmc

mplhep package — helper visualisation tool for HEP atop Matplotlib

U Matplotlib is a key tool for visualisation in the data science domain

U But it not provide all that HEP wants
- Requires a lot of tinkering

U mplhep idea:

- Keep matplotlib as a versatile and well-tested backend

- Provide a new domain-specific API

Minimal Example

import numpy as np
import matplotlib.pyplot as plt
+ import mplhep as hep

np.random.uniform(®, 10, 240)
np.random.normal (512, 112, 248)
np.random.normal(@.5, @.1, 248)

| A 4
1l

+ plt.style.use(hep.style.ROOT)
f, ax = plt.subplots()

ax.scatter(x,y, c=2);

Eduardo Rodrigues

800

700

600 » .°

500[ °

400

300

200

plotting
methods

HEP Seminar, DESY, 3 March 2020

A

mplhep

mplhep

styling

46/58


https://github.com/scikit-hep/mplhep
https://github.com/scikit-hep/mplhep

Visualisation — VegaScope package

O Minimal viewer of Vega & Vega-Lite graphics on the browser from local or remote Python processes
- Vega = declarative “visualisation grammar”, see GitHub org
- The Python process generating the graphics does not need to be on the same machine as the web browser viewing them

U 0 dependencies - can be installed as single file, used as a Python library or as a shell command, watching a file or stdin

O Example:

import vegascope

canvas = vegascope.LocalCanvas()

canvas("https://vega.github.io/vega/examples/stacked-bar-chart.vg.json")

U Altair can use VegaScope as a renderer:

Eduardo Rodrigues

import vegascope
canvas = vegascope.localCanvas()

canvas("https://vega.github.io/vega/examples/stacked-bar-chart.vg.json")

import altair as alt
alt.renderers.enable('vegascope’)

RendererRegistry.enable('vegascope')

from vega datasets import data
cars = data.cars()
alt.Chart(cars).mark_point().encode(x="'Horsepower',
y='Miles per Gallon’,
color="0Origin’
}.interactive()

Rendered at http://localhost:56574

Saveas PNG |[assvG | [+

100/% [ - |

Miles_per_Gallon

50

45—

40

354

30

254

| View source | | in editor |

o
o

[+]
i F® oo, 88 o
305 3%0%3 ° g 8 o
3"86&:@%08 oo 89
o 8 @0
o

0

20

T
40

60 80 100 120 140 160 180 200 220 240

Horsepower

Qrigin

() Europe
Japan

O USA

47/58


https://github.com/vega/
https://github.com/altair-viz/altair
https://github.com/scikit-hep/vegascope

Simulation & jet clustering — numpythia and pyjet packages

U Generate events with Pythia and pipe them into NumPy arrays

from numpythia import Pythia, hepmc_write, hepmc_read
from numpythia import STATUS, HAS_END_VERTEX, ABS_PDG_ID Interface between

| PYTHIA and NumPy

params = {"Beams:eCM": 13000, "WeakSingleBoson:ffbar2gmZ": "on",
"23:0nMode": "off" ,"23:onIfAny": "13", "WeakZ0:gmZmode": 2}

pythia = Pythia(params=params)
selection = ((STATUS == 1) & ~HAS_END_VERTEX)

for event in pythia(events=100):

array = event.all(selection)

muplus = arrayl[array["pdgid"] == 13]
Interface between
Fastlet and NumPy

U Possible to feed those events into FastJet using pyjet I

from pyjet import cluster 34 ] |

from pyjet.testdata import get event 24 .' 1 . 1 r
vectors = get event() ° - m' -
sequence = cluster(vectors, R=1.0, p=-1) N | | :

jets = sequence.inclusive jets() # List of PseudoJets Sl A R gy, CmRechen | LAk

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020

48/58


https://github.com/scikit-hep/pyjet
https://github.com/scikit-hep/numpythia

Units and constants in the HEP system of units — hepunits package

U Units and constants in the HEP system of units
- Not the same as the Sl system of units

QO Trivial package, but handy

O Typical usage:

from hepunits.constants import c light
from hepunits.units import picosecond, micrometer

tau Bs = 1.5 * picosecond # a particle Lifetime, say the Bs meson's

Quantity
Length
Time
Energy
Positron charge
Temperature

Amount of substance

ctau Bs = c_light * tau Bs # ctau of the particle, ~450 microns

print(ctau_Bs)

# result in HEP units, so mm Luminous intensity

0.44968868700000003

Plane angle

print(ctau_Bs / micrometer) # result in micrometers Solid angle

449 ,688687

U More “advanced’:

Eduardo Rodrigues

from hepunits import c_light, Gev, meter, ps
from math import sqrt

def ToF(m, p, 1):
"""Time-of-Flight = particle path length 1 / (c * beta)"""
one_over_beta = sqrt(1 + m*m/(p*p))
return (1 * one over beta /c light)

from particle.particle.literals import pi plus, K plus # particle name Lliterals

Name
millimeter
nanosecond
Mega electron Volt
eplus
kelvin
mole
candela
radian

steradian

delta = ( ToF(K_plus.mass, 10*GeVv, 1@*meter) - ToF(pi_plus.mass, 10*GeV, 1@*meter) ) / ps

print("At 10 GeV, Delta-TOF(K-pi) over 1@ meters = {:.5} ps".format(delta))

At 106 GeV, Delta-TOF(K-pi) over 1@ meters = 37.374 ps

Unit

ns

MeV

mol

cd

rad

Sr

49/58



A metapackage for Scikit-HEP — scikit-hep package

U The package has historically contained a variety of things:
- Kinematics and geometry classes for HEP
- Modelling module | A metapackage
- Visualisation utilities . (WIP, near future)
- Etc.

O The Scikit-HEP project has evolved and a different route has emerged as more adequate ...

U Vision for the future: have the scikit-hep package become a metapackage for the Scikit-HEP project

U Benefit especially for stacks for experiments: scikit-hep tags defining compatible releases of the whole toolset
- Clear what "scikit-hep version 1.0.0" is
- Stable stacks installable in a simple way
- Having a well-defined stack also helps in analysis preservation matters, widely discussed at present

O This is (still) work-in-progress ...

O “vector”: example of future package taken out, which will provide awkward-/numpy-array based vector classes,
and more

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 50/58


https://github.com/scikit-hep/scikit-hep/

Other community projects

Q zfit - fitting
Q Coffea - Columnar Object Framework For Effective Analysis
0 FAST-HEP — Analysis Description Language oriented toolkit

O Package availability via conda-forge, not just pip

Eduardo Rodrigues



Other community projects

O Other groups are working toward the same goal,
I.e. a Python(ic) ecosystem for data analysis in Particle Physics,
which is community-driven and community-oriented

U Interested? Get involved, become a user and a developer !

Q https://github.com/CoffeaTeam COffea ROOT

Data Analysis Framework

U https://github.com/FAST-HEP

U https://github.com/root-project/

U https://scikit-hep.orqg/

U https://github.com/zfit

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 52/58


https://github.com/CoffeaTeam
https://github.com/FAST-HEP
https://github.com/root-project/
https://scikit-hep.org/
https://github.com/zfit

The z£it project and package

U Project: provide a stable fitting ecosystem, in close collaboration with the community S@
U z£fit package: T \I—_IEP

- Scalable, Pythonic, HEP specific features Z | affiliated
- Pure Python, no ROOT dependency, performant (TensorFlow as main backend)
- Highly customisable and extendable

- Depends on iminuit
iImplement custom function

U Simple example: from zfit import ztf

obs = zfit.Space("x", limits=(-2, 3)) class CustomPDF(zfit.pdf.ZPDF):
_PARAMS = ['alpha’]

mu = zfit.Parameter("mu", 1.2, -4, 6)

sigma zfit.Parameter("sigma", 1.3, 0.1, 10)

gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs) def _unnormalized_pdf(self, X):
data = x.unstack_x()

alpha = self.params['alpha‘]

data = zfit.Data.from numpy(obs=obs, array=normal np)

nll = zfit.loss.UnbinnedNLL (model=gauss, data=data)
return ztf.exp(alpha * data)
minimizer = zfit.minimize.Minuit() e

result = minimizer.minimize(nll) Minimize

custom_pdf ='Cusf0mPDF(6b5=obs, élpha=0;2)

param errors = result.error() Errors

integral = custom pdf.integrate(limits=(-1, 2))
sample custom pdf.sample(n=1000)
prob custom pdf.pdf(sample)

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 53/58


https://github.com/zfit/zfit
https://github.com/zfit/zfit

The coffea project

Coffea -
Column
Object
Framework
for Effective
Analysis

Eduardo Rodrigues

coffea executor

ROOT files map 4 reduce Histograms

Parquet files — — —  Event lists
coffea.processor

Fermilab project to build an analysis framework on top of
awkward array and uproot

Separation of “user code” and “executors”
e User writesaProcessor to do the analysis
e Executorruns this on different distributed job systems,
e.g.
o  Local multiprocessing, Parsl or Dask (batch systems),
Spark cluster

Coffea achieved 1 to 3 MHz event processing rates
e UsingSpark cluster on same site as data at Fermilab

HEP Seminar, DESY, 3 March 2020

ISP USg WOy udXe) apIIS

54/58


https://github.com/CoffeaTeam/coffea

The FAST-HEP project EACT_HEP

Toolkit to help high-level analyses, in particular, within particle physics

REP

U The main product should be the repository

- Talking about contents — publication is another matter ;-)

€2y http://fast-hep.web.cern.ch &g fast-hep@cern.ch

Your analysis repository is your analysis

Processing system

The FAST implementation

What datasets do : Lo
| | oo What do you Howdoyouwant [  Plots For tools: For data: For descriptions:
f whatisther S W e ™ use Python use Pandas use YAML...
?r:l:t:fé;:;,eq - Demoed at CHEP 2018
. :  NumPy
Its contents will change as: For free, in a repository: $
e You design the analysis e History of analysis evolution upr@Dt pa n d as
e Yougetnew /updateddata e Continuous integration and validation r%‘%@k%’ﬁt"d Vit = 0'ie + i + €3
= o] i
NumExpr L
QO Use a declarative programming approach: C]t (qég)
User sys WHAT, interpretation decides HOW 63
U Project towards an Analysis Description Language ... Material taken from Ben Krikler

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 55/58


https://github.com/FAST-HEP

Conda-forge — making it easy for users

conda-forge

-
A community led collection of recipes, build infrastructure and distributions for the conda package manager.

o —
CONDA-FORGE

£ hitps:/fconda-forge.org 4 conda-forge@googlegroups.com

O Easy / trivial installation in many environments is a must !

B License: BSD-3-Clause
# Home: https://github.com/scikit-hep/uproot

D Muc h WO rk h as b een d one | n 2019 to p rOVi d e <[> Development: https://github.com/scikit-hep/uproot
&) Documentation: https://uproot.readthedocs.io/en/latest/

binary “wheels” on PyPIl, and conda-forge packages 3 161999 total downloads
for many of these new packages B Last upload: 8 days and 16 hours ago

D Evarme of . Installers
xample of uproot: conda install @
v3_‘|‘|_‘|

To install this package with conda run:
conda install -c conda-forge uproot

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 56/58


https://github.com/conda-forge/
https://anaconda.org/conda-forge/uproot

Wrapping up

Graeme A Stewart, HSF report to CERN Scientific Policy Committee, 10/12/2019

PyHEP (“Python in HEP”) and New Approaches

e Python is ever more popular in Particle Physics
e |Impressive developments of a Python scientific ecosystem for HEP in the last 2 years

e With strong links to the general scientific ecosystem
o Interest in data science tools and machine learning is significant for this growing community

® Inspiring new approaches for data analysis
D Exploiting modern approaches - declarative programming,

heterogeneous resources, etc. RO OT

This is an ecosystem into which HEP can, and does, contribute \( Batadndl s vl
Knowledge transfer goes both ways
Various projects under development, inter-communicating

e Yearly PyHEP workshops have been a success
o  Next year hoping to co-locate with SciPy 2020

Eduardo Rodrigues HEP Seminar, DESY, 34 March 2020 57/58



Thank you for listening

QO Scikit-HEP project
- Get in touch

U HEP Software Foundation (HSF)
- HSF general forum hsf-forum@googlegroups.com

U HSF PyHEP Working Group
- Gitter channel

- GitHub repository “Python in HEP” resources

Eduardo Rodrigues HEP Seminar, DESY, 3" March 2020 58/58


https://scikit-hep.org/
https://scikit-hep.org/getting-in-touch
https://hepsoftwarefoundation.org/
mailto:hsf-forum@googlegroups.com
https://hepsoftwarefoundation.org/workinggroups/pyhep.html
https://gitter.im/HSF/PyHEP
https://github.com/hsf-training/PyHEP-resources

