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Density Estimation & Latent Variables

• Want to model pθ(x) ≈ p∗(x).

I p∗(x): true data density.
I pθ(x): density under (maybe generative) model parameterized by θ
I minθ DKL (p∗‖pθ)⇔ maxθ log pθ(x).

• Introduce ’hidden’ variables z, joint density pθ(x, z) = pθ(x|z)p(z).

• Log-density via marginalization:

log pθ(x) = log

∫
z

dz pθ(x|z)p(z). (1)

• Problem: quadrature takes exponential time in dim(z), likely non-analytic.
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Density Estimation & Latent Variables

Introduce proposal/variational, distribution q(z; x) with efficient sampling +
evaluation. Get lower bound on the log-model evidence:

log pθ(x) = log

∫
z

dz p(x|z)p(z)
q(z; x)

q(z; x)

= logEq(z;x)

[
p(x|z)p(z)

q(z; x)

]
≥ Eq(z;x)

[
log

p(x|z)p(z)

q(z; x)

]
, L(ψ)

L(ψ) can be efficiently optimized as a proxy for pθ(x) - standard ELBO
objective, but we can do better ...
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Density Estimation & Latent Variables

Let Eq [ψ(z)] = pθ(x). Then:

| log pθ(x)−Eq [logψ] | ≈ 1

2pθ(x)2
V [ψ] (2)

(Intuition: Taylor expand logψ in small quantity ∆ = pθ(x)− ψ(x)).

• Tightness of bound scales with estimator variance.

• Simple way to reduce variance is to consider the sample mean of ψ:

ψ̂K =
1

K

∑
k

ψk =
1

K

∑
k

p(x|zk)p(zk)

q(zk ; x)
; zk ∼ q(z; x) (3)
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Density Estimation & Latent Variables

• Tighten bound by considering importance-sampling estimate (Burda,
2016). K = 1 is standard ELBO.

• Tradeoff compute for tightness.

log p(x) ≥ Eq(z;x)

[
log

1

K

K∑
k=1

p(x|zk)p(zk)

q(zk |x)

]
, LK (q) (4)

≥ Eq(z;x)

[
log

p(x|z)p(z)

q(z; x)

]
(5)

Use of log pθ(x) as anomaly detection score extensively researched (e.g.
Nalisnick, 2018).
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Density Estimation & Latent Variables

• Use RD LHC Olympics Dataset. Same experimental setup as in
(Nachman/Shih, 2020).

I 1/2 train-test split.
I 1000 injected signal events.
I Apply smoothing transformation

g : [0, 1]D → RD , g(x) = Logit (ε+ (1− ε)x) (Dinh, 2017).

• Features:

I MJ1 : The invariant mass of leading jet.
I ∆MJ1,J2 : The difference in invariant mass between the leading,

subleading jets.
I τ J1

21 , τ
J2
21 : The 2, 1-subjettiness ratio for the leading, subleading jets,

respectively.
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log pθ(x) scoring

Model BPD Signal BPD Bkg. BPD |∆BPD| AUC

L16(q) −0.739± 0.001 −0.076± 0.007 −0.743± 0.001 0.667± 0.007 0.814± 0.002
SUMO −0.748± 0.001 −0.149± 0.006 −0.751± 0.001 0.602± 0.006 0.818± 0.004
L1024(q) −0.742± 0.001 −0.067± 0.007 −0.746± 0.001 0.679± 0.007 0.815± 0.002
FFJORD −0.744± 0.001 −0.060± 0.018 −0.747± 0.001 0.687± 0.017 0.817± 0.003
Real-NVP −0.747± 0.000 −0.136± 0.001 −0.750± 0.000 0.614± 0.001 0.826± 0.001
MAF -0.758± 0.001 −0.215± 0.001 −0.761± 0.000 0.547± 0.000 0.807± 0.001

Model performance using log p(x) as a scoring function, reported in the average
Bits per Dimension for all events (BPD), for signal and background events
(Signal BPD and Bkg. BPD, respectively) over the test dataset, and the area
under the curve (AUC) obtained by thresholding log p(x). For the purposes of
density modelling, lower BPD is better.
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λ(x) = pθ(x|bkg-only)
pθ(x|data) scoring
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L32(q) (AUC = 0.874 ± 0.007)

L64(q) (AUC = 0.879 ± 0.004)

L128(q) (AUC = 0.884 ± 0.005)

L256(q) (AUC = 0.889 ± 0.010)

L512(q) (AUC = 0.900 ± 0.001)

L1024(q) (AUC = 0.900 ± 0.002)

L2048(q) (AUC = 0.899 ± 0.002)

Figure 1: Background rejection versus signal efficiency curves over the signal region in the test set
for the LK (q) estimator with different number of importance samples K . Results are given as the
mean and standard deviation over 3 trials with different random seeds. The uncertainty bands show
the 1σ deviation from the mean.
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Studentizing

• Well-known that importance-sampling density should have heavy-tails
(Mackay, 2003).

• Instead of having q(z; x) Gaussian-distributed, consider Student’s
t-distribution.

• Degrees of Freedom parameter ν controls tail heaviness.

Figure 2: (Wikipedia, 2020)
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Studentizing

Differentiable reparameterization:

• Gaussian reparameterization:

z ∼ N (µ,Σ)← z = µ+ L∗ε, ε ∼ N (0, 1)

.

• Student’s t reparameterization:

z ∼ St(µ,Σ, ν)← z = µ+
L∗ε√
u/ν

, ε ∼ N (0, 1), u ∼ Gamma(ν/2, 1/2)

• Output distributional parameters (µ, ν,Σ) vs. (µ,Σ).

• Restrict ν > 1, otherwise random samples are extremely large.
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Studentizing
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Student-t Posterior (AUC = 0.866 ± 0.004)

Gaussian Posterior (AUC = 0.825 ± 0.003)
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Studentizing

Gaussian-VAE.
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Studentizing

Student’s-t-VAE.
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Future Work

• See if superior density modelling translates to better anomaly detection
(preliminary results supportive.)

• Look at more expressive posterior distributions given by normalizing flows.

• Investigate scaling to higher-dimensional feature set (preliminary results
non-supportive.)
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Bayes’ Theorem

• Conditioning on the known value of data x yields Bayes’ theorem:

p(θ|y) =
p(y |θ)p(θ)

p(y)

I The likelihood p(y |θ) is the conditional probability of the data y
given fixed θ.

I The prior p(θ) represents information we have that is not part of the
collected data y .

I The evidence p(y) is the average over all possible values of θ.

p(y) =
∑
θ

p(y |θ)p(θ)

• p(θ|y) is the posterior distribution, which represents our updated beliefs
under our prior p(θ) now we have observed the data y .
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Bayes’ Theorem

• Alternatively, observe the effect of some unknown cause. Wish to
determine the cause:

p(Cause|Effect) =
p(Effect|Cause)p(Cause)

p(Effect)

I The likelihood p(Effect|Cause) describes the relationship in the
causal direction.

I Computing the posterior p(Cause|Effect) allows us to diagnose
potential causes.
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Bayes’ Theorem

• We have a set of given hypotheses {H1, . . .Hn}, corresponding to
different values of θ.

• Want to find most likely hypothesis given the data we have collected
so far.

• Look at ratio of posterior density at different points θ, θ′

corresponding to hypotheses H,H ′:

p(θ|y)

p(θ′|y)
=

p(θ)p(y |θ)

p(θ′)p(y |θ′)

• This allows us to bypass calculation of the (potentially intractable)
evidence p(y).
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Naive Bayes

• For n possible boolean evidence variables there are 2n possible
combinations of conditional probabilities we need to know.

• Conditional independence of two variables X ,Y given a third Z allows us
to use only a reasonable number of combinations.

P(X ,Y |Z) = P(X |Z)P(Y |Z)

• For n effects that are all conditionally independent given the cause, the
representation is O(n) instead of O(2n).

• If a single cause is the direct cause of a number of effects, all of which are
conditionally independent, then the full joint distribution is:

P(Cause,Effect1, . . .Effectn) = P(Cause)
n∏
i

P(Effecti |Cause)
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Marginalization

• For any proposition φ:

P(φ) =
∑

{ω:φ(ω)=True}

P(ω)

• More generally, find the distribution of φ by averaging all possible values
of P(φ|x):

P(φ) =
∑
x

P(φ|x)P(x)
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Bayes’ Rule

• We know the test reports positive, want to find the posterior probability
of actual Leckieitis with this knowledge.

• Probability of contracting Leckieitis: p(L) = 10−4.

• Probability that the test is positive, given patient has Leckieitis:
p(Test = +|L) = 0.99

• Probability that the test is positive:

p(Test = +) = p(Test = +|L)p(L) + p(Test = +|¬L)p(¬L)

= 0.99× 10−4 + 0.01× (1− 10−4)

= 0.0098

• Probability of having Leckieitis given the test is positive:

p(L|Test = +) =
p(Test = +|L)p(L)

p(Test = +)

= 9.8× 10−3
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Bayes’ Rule

• Discrimination between blue/green taxis is 75% reliable, and you observed
a blue taxi.

• Probability that the actual color is blue, given you observed blue:

p(Actual = •◦|Observed = •◦) =
p(Observed = •◦|Actual = •◦)p(Actual = •◦)

p(Observed = •◦)

• Probability that the actual color is green, given you observed blue:

p(Actual = •◦|Observed = •◦) =
p(Observed = •◦|Actual = •◦)p(Actual = •◦)

p(Observed = •◦)
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Bayes’ Rule

• Want to find the ratio of both posteriors, or odds-ratio:

O =
p(Observed = •◦|Actual = •◦)p(Actual = •◦)
p(Observed = •◦|Actual = •◦)p(Actual = •◦)

• Using the fact that p(Actual = •◦|Observed = •◦) = 0.75:

O =
3p(Actual = •◦)
p(Actual = •◦)

• If we know the prior probabilities: p(Actual = •◦) = 9p(Actual = •◦), then
we can incorporate this into our calculation of the posterior ratio to find
that, while you swear that the taxi is blue, being struck by a green taxi is
still 3 times more likely.
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Bayesian Networks

• Full joint probability distribution specifies probability of each assignment
of values to random variables. For n variables there are 2n entries.

• Conditional independence between effect variables, given a cause variable,
allows factorization of the full joint distribution into smaller conditional
distributions.

• Bayesian Networks are a compact representation of the full joint
distribution that shows dependencies between variables graphically.
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Bayesian Networks

• Vertices correspond to random variables.

• Edges between vertices, e.g. X → Y indicates X has a direct influence on
Y . Causes should be parents of effects.

• Each vertex has a conditional probability distribution summarizing effects
of parents on the random variable P(Xi |Parents(Xi )).
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Bayesian Networks

• Chain rule allows decomposition of joint into conditionals:

P(x1, x2, . . . , xn) = p(x1)p(x2|x1) . . . p(xn|xn−1, . . . , x2, x1)

• Via conditional independence, each random variable xi only directly
depends on a small number of variables: Parents(xi ).

P(x1, x2, . . . , xn) =
n∏

i=1

P(xi |Parents(xi ))

• If each variable has d possible values and at most k parents, then the
joint distribution has O(ndk) entries (versus O(dn)).

• e.g. 20 random variables, each with 5 parents, then the Bayesian network
approach uses 640 random variables versus over 106 for the full joint.
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Bayesian Inference

• In the context of Bayesian networks, compute posterior P(X |e) for a
query X (some assignment of random variables) given observed event e
(assignment to a set of evidence variables).

• ’Find probability of X , given we know e has occurred.’
I Let H denote all variables outside X , e (call H hidden variables), let

Z be the evidence (i.e. normalizing constant). From Bayes’
Theorem:

P(X |e) =
1

Z
P(X , e)

=
1

Z

∑
H

P(X , e|H)p(H)

=
1

Z

∑
H

P(X , e,H)

• To solve a Bayesian inference problem:
I Identify query, evidence and hidden variables.
I Decompose joint distribution using Bayesian network structure into

product of simpler conditional distributions.
I Fix evidence variables to observed values.
I Sum (marginalize) over remaining hidden variables H.
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Bayesian Inference
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Bayesian Inference

• If A observed, B and E are no longer independent! Knowledge of A
couples the parent variables. This is an example of a V -structure.

• Parents are independent if child is unobserved, but coupled when child is
observed.

• Simpler example: suppose your lawn is wet in the morning (C). A (rain)
and B (sprinkler) are two possible causes for it being wet. If we know C is
true and A is false, then B must be true. i.e. A and B are not
conditionally independent given C .
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Sequential Bayesian Updates

• Bayes’ Theorem allows us to update our uncertainty as new information is
acquired.

• Hypothesis H; observe a series of independent measurements
{x1, x2, . . . xT}.

• How does our uncertainty about H evolve given these observations?
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Sequential Bayesian Updates

• Given sequential measurements {x1, x2, . . . xT}, our likelihood at time t
summarizes the probability of the data given the hypothesis H:

p(x1, . . . xt |H) = p(x1|H)p(x2|x1,H) . . . p(xt |xt−1,H)

Where we let xn = (x1, x2, . . . , xn).

• Bayes’ Theorem:
p(H|xt) ∝ p(xt |H)p(H)

• At time t + 1, the posterior is:

p(H|xt+1) ∝ p(xt+1|H)p(H)

• How to get from P(H|xt) to P(H|xt+1)?
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Sequential Bayesian Updates

• Use the chain rule:

p(H|xt+1) ∝ p(xt+1|H)p(H)

= p(xt+1, xt |H)p(H)

= p(xt+1|xt ,H)p(xt |H)p(H)

∝ p(xt+1|H)p(H|xt)

New posterior = Likelihood of new measurement× Current posterior (6)

• How does our uncertainty about H evolve given these observations?

I Answer: Reuse the current posterior distribution as the prior
distribution in the next time step, and normalize appropriately.
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Sequential Bayesian Updates

• Let πt(H) be the posterior at time t, then the recursive update reads:

πt+1(H) ∝ p(xt+1|H)πt(H)

• πt(H) summarizes entire history of the sequence.

I Normalization factor Z is average over all possible values of H:
Z =

∑
h′ p(xt+1|H = h′)πt(H = h′)

• In summary, Bayesian inference provides an efficient way of sequentially
updating our belief about a state that only depends on the current
measurement and posterior.
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Sequential Bayesian Updates in Robotics

• In robotics, your hypothesis can be e.g., your position or state θ, which
evolves in time.

• Assume your dynamics are Markov. i.e. the state θt+1 only depends on
the current state θt :

p(θ0) = π(θ0), p(θt+1|θ0, θ1, . . . , θt) = p(θt+1|θt)

• State θ is hidden - only measurements xt observed. To understand θ, look
at joint density of all states θt and measurements xt :

p(θt , xt) = π(θ0)
t∏

i=0

p(θi |θi−1)p(xi |θi )
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The Bayes Filter

• This Markovian + Bayesian model (HMM) is widely used in:

I Speech recognition.
I Robotics.
I Particle physics.
I GPS / target tracking.
I Brain imaging.

• In robotics, use sensor data gathered to recursively update ’belief’ of
position/velocity estimate.

• Remember that the evolving state θt is unknown, typically we want to:

I Filter: Compute p(θt |xt) to estimate current state.
I Predict: Compute p(θt+k |xt) to predict future states.
I Reconstruct: Compute p(θt−k |xt) to identify pre vious states.
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The Bayes Filter

• Want posterior at t + 1 given observations xt+1:

p(θt+1|xt+1) = p(θt+1|xt , xt+1) (7)

∝ p(xt+1|θt+1, xt)p(θt+1|xt) (8)

= p(xt+1|θt+1)p(θt+1|xt) (9)

• Compute p(θt+1|xt) by averaging over current state θt :

p(θt+1|xt) =
∑
θt

p(θt+1|θt)p(θt |xt)
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The Bayes Filter

• We perform the prediction step by averaging over all possible values of the
current state θt :

p(θt+1|xt) =

∫
θt

dθt p(θt+1|θt)p(θt |xt)

• Then perform the filter step by the New ∝ Current × Likelihood rule,
combining the predictive distribution with the likelihood of the next
measurement.

p(θt+1|xt+1) ∝ p(θt+1|xt)p(xt+1|θt+1)

• So the overall process is:

Predict-Observe-Filter-Predict-Observe-Filter-. . .

Justin Tan AI/RL 36


