Anomaly Awareness for New Physics Searches

Charanjit Kaur Khosa

University of Sussex

Anomaly Detection Workshop, 17th July 2020

In collaboration with Veronica Sanz Based on arxiv[hep-ph]: 2007.XXXX (appearing next week)

Anomaly Awareness (AA)

We will present a new algorithm for anomaly detection called Anomaly Awareness (AA)

The algorithm learns about normal events (SM) while is made aware of the possibility of anomalies (BSM)

in a way that it becomes sensitive to ANY kind of BSM anomalies

In this talk we will show how AA works in a well-known topology for new physics searches

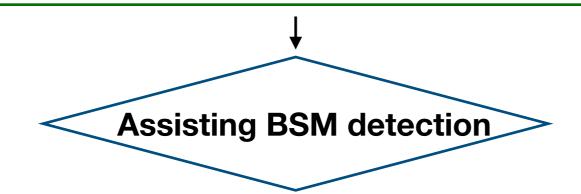
FAT JETS

and test it against an array of BSM scenarios: EFT Higgs, Resonances -> leading jet with 2, 3 or 4 subsets

New potential for New Physics Searches

(Deep)Neural Networks, CNNs, (V)Autoencoders, Clustering,...

Classification, Jet tagging, Anomalous Jet, Anomalous Events, Limit setting, Resonance,...



This talk:

BSM: Boosted Regime

Input data: Jet Images

• Model: CNN

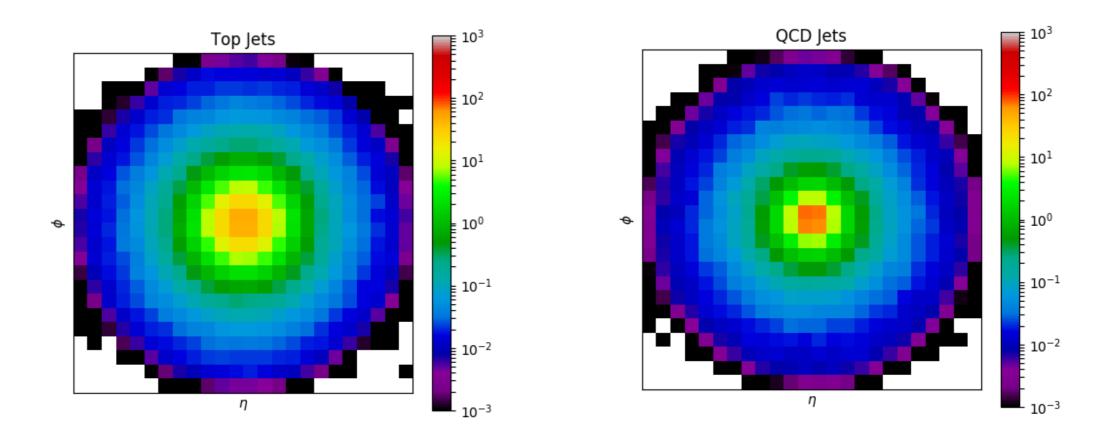
Top and QCD Jets

SM $t\bar{t}$ and QCD diet production, $\sqrt{s}=13~\text{TeV}$

Madgraph + pythia

Leading jet with pt > 750 GeV, R=1 Anti-kt jet

$$\Delta \eta = 0.087, \Delta \phi = 0.087$$



Leading jet (Averaged over 50K events)

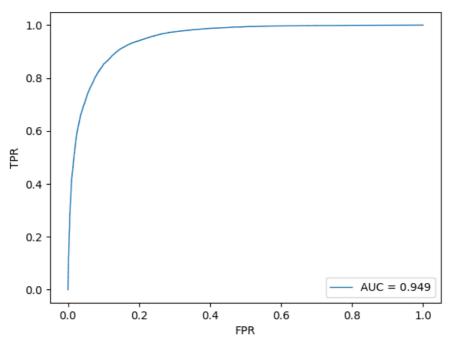
CNN for Top vs QCD Classification

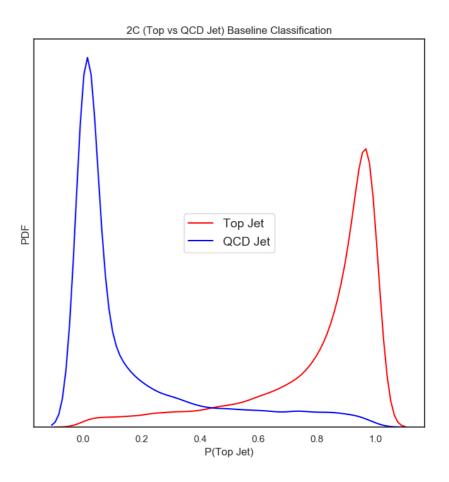
(2C Baseline Classification)

100K Images (balanced data)
Training:Test data= 70:30%

Batch Size=100 Epochs=100

Cross-Entropy Loss function





BSM Benchmarks

SM

$$Wjet: pp \to W^+W^-, W \to jj$$

 $\text{EFT}: pp \to HZ, H \to b\bar{b}, Z \to l^+l^-$

Leading jet, same cuts as baseline jets

Resonance (Graviton) decay, mY=3 TeV

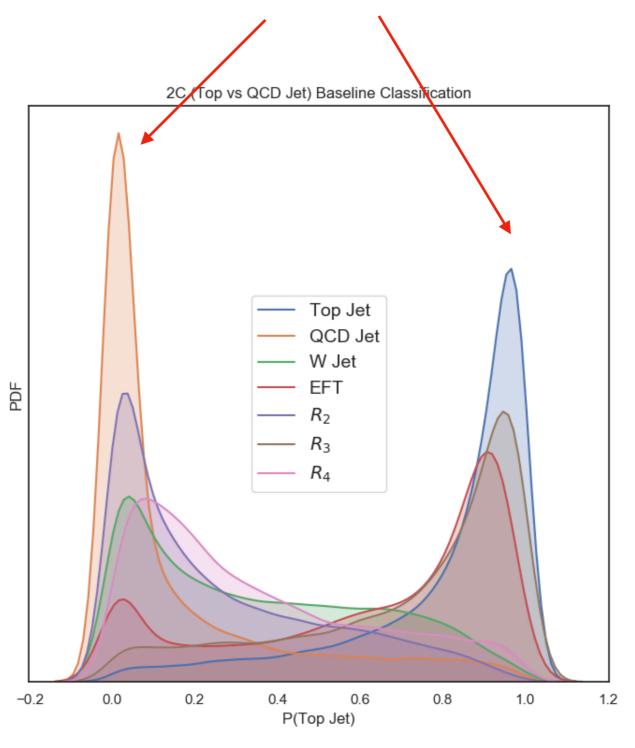
$$R_2: pp \to Y \to ZZ, Z \to jj$$

$$R_3: pp \to Y \to t\bar{t}, t \to bW, W \to jj$$

$$R_4: pp \to Y \to HH, H \to W^+W^-, W \to jj$$

2C Baseline Classification

Training on



Softmax Probability

Anomaly Awareness

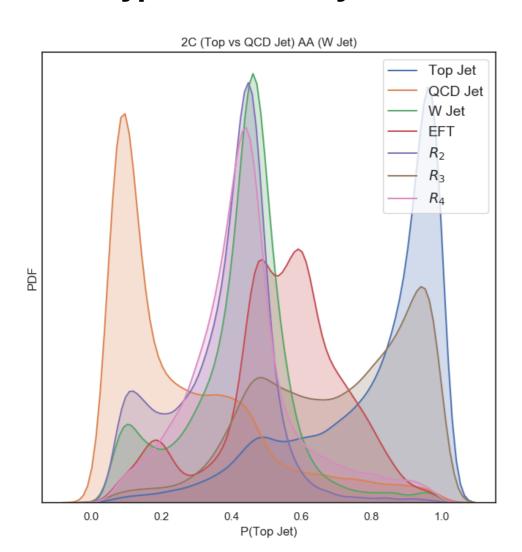
Algorithm 1 Anomaly Awareness (AA).

```
Prior Run
  Initialize test:train splitting of Normal dataset (N)
  Initialize hyper parameters
  Initialize Model (CNN architecture)
  for Training over the epochs do
     Cross entropy loss
     Update model parameters.
  end for
  Get accuracy for D_{test} and D_{train}
  This run sets the hyper-parameters for the AA run
Anomaly Detection Run
  Load the Anomaly (An) dataset
  Initialize amount of data w.r.t. the Normal dataset
  Initialize \lambda_{AA}
  for Training over the epochs do
     l_1 = Cross entropy loss (Normal dataset)
     l_2 = Cross entropy loss (Anomaly dataset with Uniform
     Distribution)
     Loss = l_1 + \lambda_{AA}l_2
  end for
  Get softmax probabilities for all the data sets,
  p_i, i = N, An
  Select datapoints in a range [p_{An}^{min}, p_{An}^{max}]
  optimized to select anomaly over normal events
```

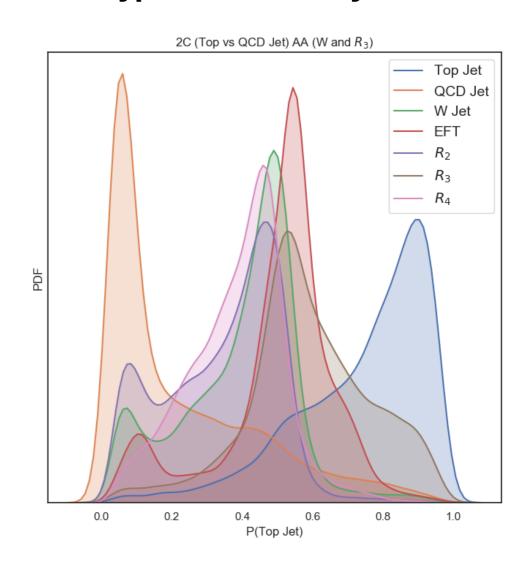
Anomaly Awareness for 2C Data

We see the effect of adding awareness to the classification task

One type of anomaly data set



Two types of anomaly data set

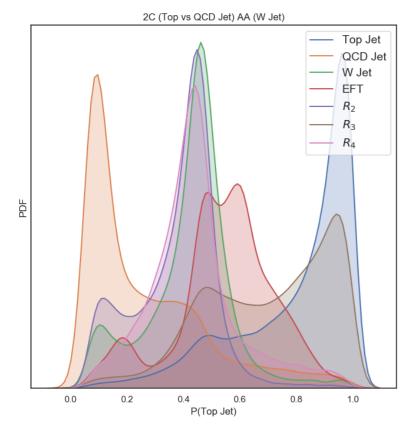


As we add more types of BSM examples, ALL BSMs gather in the centre Uniform Distribution to the AA term for all the BSM events

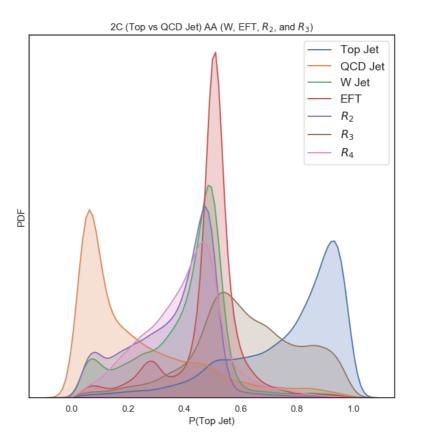
Robust Anomaly Detector

Awareness of a variety of anomalies

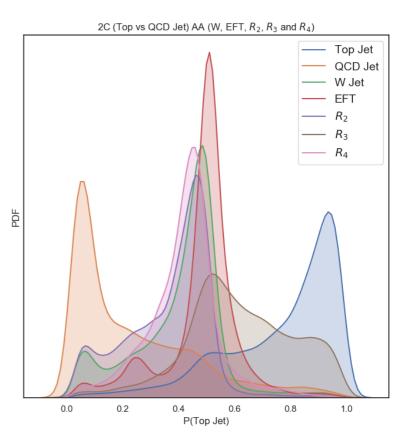
AA term with 1 type of anomaly



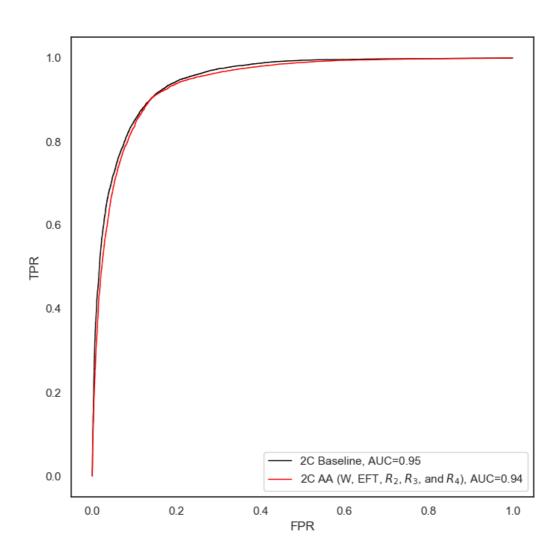
AA term with 4 types of anomalies



AA term with 5 types of anomalies

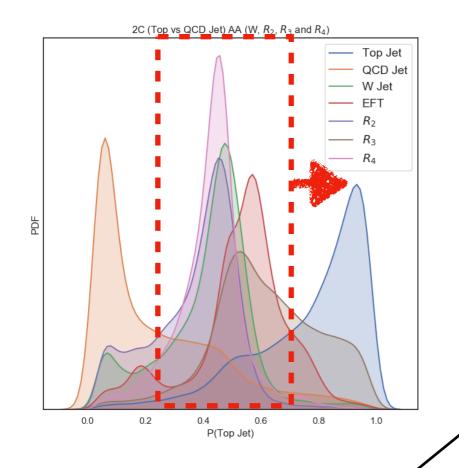


Baseline vs AA Comparison



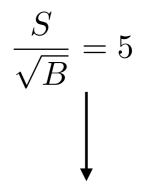
The addition of the AA term does not degrade the baseline classification but adds the ability to use its output for anomaly detection

Signal Cross-section Reach

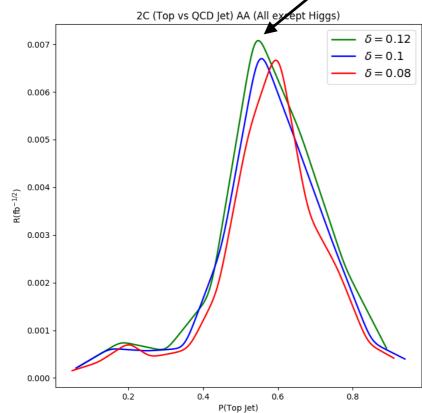


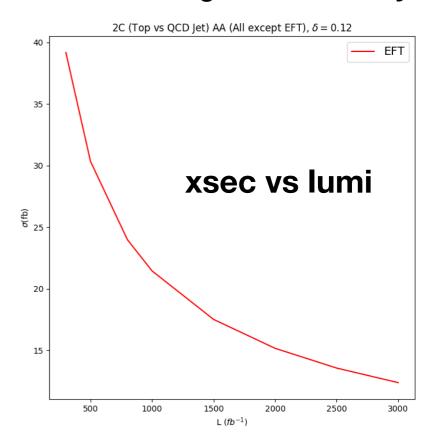
We scan on windows of the classifier output
Cutting a small window around 0.5
anomaly detection is enhanced
We use S/Sqrt[B] as an example of quantity to
maximise (S=BSM, B=SM)

$$R=rac{\epsilon_S}{\sqrt{\sigma_B\epsilon_B}}$$
 optimal cut



translation into a generic anomaly xsec

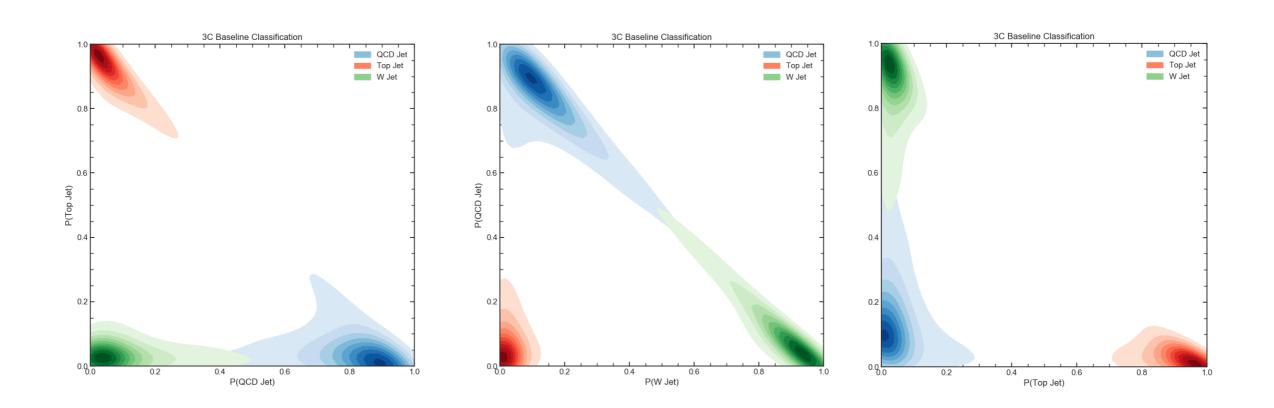




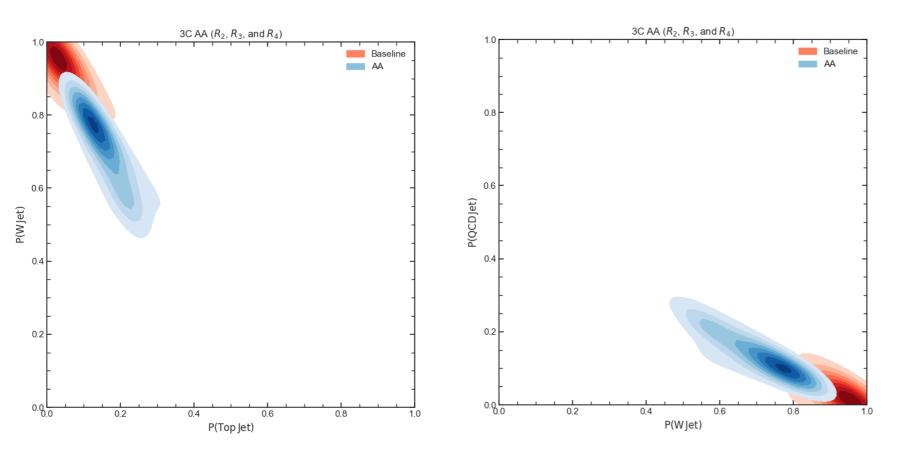
Three-classes (baseline) Classification

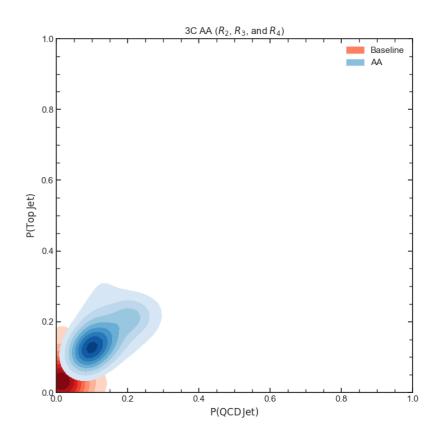
This procedure can be generalized beyond binary classification

Top Jet, QCD jet, W-jet
150 K images (balanced data set), training:test=70:30%



Anomaly Awareness for 3 Classes





Unseen Data Set: EFT

Summary and Outlook

We present a new algorithm for anomaly detection It is based on the procedure of classifying 'normal' (SM) events and make aware during that classification of the presence of anomalies (BSM)

We find that the procedure is effective on BSM anomalies not seen before and becomes robust as we make the algorithm aware of a varied-enough set of anomalies

 We demonstrate the potential of anomaly awareness method for the boosted regime using jet images for the event representation and CNN classification model

Next Steps:

- Using different models
- Use it for a large set of kinematic variables to capture variety of new physics
- Comparison with other anomaly detection methods
- Using it for LHCO data set