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How To Train on Data?



Classification Without Labels

https://arxiv.org/abs/1708.02949


CWoLa Hunting

https://arxiv.org/abs/1902.02634
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Anomaly Detection : Autoencoders

the data
● Can train directly on data, no labels needed
● Anomalous events should have a higher 

reconstruction loss

https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1808.08979
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Drawbacks
● CWoLa Hunting

– Worry about sculpting QCD dijet mass distribution
– Apply to non-resonant signals? 

● Autoencoders  
– Only ‘learns’ what QCD looks like
– Room for improvement as a Sig vs. Bkg classifier 
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The Tag N’ Train Algorithm
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How to Combine? 

● CWoLa  + autoencoders

● Find samples with enriched signal 
using autoencoders

● Train better classifiers using these 
samples 



Tag N’ Train (TNT)
● A of training improved classifiers on data
● Assumptions:

– Signal has 2 interesting objects in it
– One has a starting classifier for each object
– Signal-like features in background events are 

uncorrelated between the 2 objects



Tag N’ Train
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Tag N’ Train
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Dijet Anomaly Search
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Events A

Events B

Events C

Applying TNT to a Resonance Search



Oz Amram (JHU),  Anomaly Detection Workshop 19

Events A

Events B

Events C

Applying TNT to a Resonance Search
Cross-Validate!C

A

B
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Technical Details
● 2 objects: heavy jet and light jet in event
● TNT Classifiers and autoencoders are CNN’s 

based on jet images (details in backup)
● Top 20% ‘sig-like’, bottom 40% ‘background-like’ 

– Optional: require signal events in dijet mass window
● Combine 2 classifiers into 1

– Require both jet’s scores be in top X% of scores



Classification Performance
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Dijet Mass Sculpting
● No sculpting of dijet 

mass! 
– Images pT normalized

● Decorrelation methods 
also possible
– Pt reweighting tried, 

found no difference

R&D 
Dataset
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Assumption: Correlations

● Key assumption: Anomalous features of 
background events are uncorrelated

● Empirically (?) seems to hold

“Pure” CWoLa Tag N’ Train

R&D 
Dataset
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Future Work
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Future Work 
● Explore architectures and inputs for TNT classifiers

– High-level vs. low-level features 
– Beyond just jet substructure: SV’s, tracking information, 

leptons, etc. 
● Explore in a non-resonant search

– Sub-dominant backgrounds with ‘interesting’ jets (e.g. ttbar)? 
● Can supervised searches be incorporated within this 

framework?
– e.g. Start with a W and top classifiers trained in MC
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Conclusions

● New Tag N’ Train algorithm for training 

classifiers on data

● Works well in dijet anomaly search

● Trade offs between various techniques 

● Lot’s of room to explore!
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Conclusions
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●
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Backup
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Technical Details
● Anti-kT R = 1 jets
● Jet images, mostly based on “Pulling out All the Tops” (

1803.00107)
– 40x40 pixels covering +/- 0.7 in Δη and Δɸ
– Centered, rotated and flipped before pixelizing
– Normalized so sum of all pixel intensities is 1

● Autoencoders are CNN’s with a ~20k params and a latent 
size of 6

● Classifiers are CNN’s with ~7k parameters
● Further details in the paper, github  

https://arxiv.org/abs/1803.00107
https://arxiv.org/abs/2002.12376
https://github.com/OzAmram/TagNTrain


Understanding Signal
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Mass Sculpting Comparison

R&D 
Dataset
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Bump Hunting

Tighter Selection 

3.1σ 4.2σ 7.7σ

R&D 
Dataset

R&D 
Dataset



Oz Amram (JHU),  Anomaly Detection Workshop 34

Black Box1 Results (Shown in January)

● Resonance at ~ 3800 GeV
● 4 sigma evidence after combining samples
● Nothing seen in quick scan of black boxes 2 and 3


