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e How to train on data?

e The Tag N’ Train algorithm
e Dijet anomaly search

e Future work




How To Train on Data?
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 Signal region = dijet mass
window

* Train a classifier on signal
region vs. others



https://arxiv.org/abs/1902.02634

arXiv:1808.08992
arXiv:1808.08979
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* Train a network to compress and decompress
the data

e Can train directly on data, no labels needed

 Anomalous events should have a higher
reconstruction loss



https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1808.08979

« CWolLa Hunting

- Worry about sculpting QCD dijet mass distribution
- Apply to non-resonant signals?

* Autoencoders
- Only ‘learns’ what QCD looks like
- Room for improvement as a Sig vs. Bkg classifier




The Tag N’ Train Algorithm




« CWolLa + autoencoders

* Find samples with enriched signal
using autoencoders

* Train better classifiers using these

samples
~ OzAm@m(JHU) AnomalyDetectionWorkshop g




e A of training improved classifiers on data

* Assumptions:
- Signal has 2 interesting objects in it
- One has a starting classifier for each object

— Signal-like features in background events are
uncorrelated between the 2 objects

Tag with a weak classifier N’ Train a better one!

=
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Dijet Anomaly Search







Cross-Validate!




e 2 objects: heavy jet and light jet in event

« TNT Classifiers and autoencoders are CNN's
based on jet images (details in backup)

e Top 20% ‘sig-like’, bottom 40% ‘background-like’
- Optional: require signal events in dijet mass window

« Combine 2 classifiers into 1
- Require both jet’s scores be in top X% of scores
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Compare performance of
techniques for different
amounts of signal

S/B in full sample (in M, SR)

Autoencoders performance
indep. of signal

TNT + M, matches CWolLa
hunting at high signals

TNT + M, can maintain
performance at low signals
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* No sculpting of dijet
mass!

- Images p; normalized

 Decorrelation methods

also possible

- Pt reweighting tried,
found no difference




“Pure” CWolLa Tag N’ Train
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¢ Key assumption: Anomalous features of
background events are uncorrelated

?
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(V)AE’s — 4=

CWoLa Hunting

TNT

+ Performance indep. of
amount of signal

+ Minimal assumptions

— Inherently ‘anti-QCD’
rather than a ‘pro-signal’

+ Great performance for
large to medium signals

+ Can do full-event
classification

— Assumption: resonant
signal

— Must fully decorrelate
features with M,

+ Great performance for
medium/large signals and
maintains performance for
smaller signals

+ Mass sculpting
mitigation possible

— Requires a starting
classifier

— Assumption: Signal has
2 interesting objects

*Of course there are other
interesting techniques with
different trade offs too



Future Work




e Explore architectures and inputs for TNT classifiers
- High-level vs. low-level features

- Beyond just jet substructure: SV’s, tracking information,
leptons, etc.

* Explore in a non-resonant search
- Sub-dominant backgrounds with ‘interesting’ jets (e.g. ttbar)?

e Can supervised searches be incorporated within this
framework?

- e.g. Start with a W and top classifiers trained in MC




* New Tag N’ Train algorithm for training

classifiers on data
 Works well in dijet anomaly search
* Trade offs between various techniques

e Lot’s of room to explore!




e Lot’s of room to explre! N







« Anti-kT R =1 jets

* Jet images, mostly based on “Pulling out All the Tops” (
1803.00107)

— 40x40 pixels covering +/- 0.7 in An and A
- Centered, rotated and flipped before pixelizing
- Normalized so sum of all pixel intensities is 1

« Autoencoders are CNN'’s with a ~20k params and a latent
size of 6

e Classifiers are CNN'’s with ~7k parameters
e Further details in the paper, github



https://arxiv.org/abs/1803.00107
https://arxiv.org/abs/2002.12376
https://github.com/OzAmram/TagNTrain
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e Resonance at ~ 3800 GeV

* 4 sigma evidence after combining samples
* Nothing seen in quick scan of black boxes 2 and 3




