Patrick Connor

Introduction Physics

Smoothness

Analysis

Summary & Prospects

Back-up

Inclusive jet measurement with 2016 data Overview and status of the analysis

Patrick L.S. CONNOR Radek Žlebčík

Deutsches Elektronen-Synchrotron Hamburg

6 February 2020

Introduction.

Introduction

Inclusive jet

Patrick Connor

- Introduction Physics
- Smoothness
- Analysis
- Summary & Prospects
- Back-up

Goal

- Measurement of inclusive jet differential cross section in pp collisions with 2016 data.
- Determination of α_S and PDFs.
- Limits on contact interactions.

Status

- Framework and workflow were set up during last Autumn.
- Now investigating smoothness and correlations.
- Planning to release the analysis in time for ICHEP.

Outline

Ť.

- Physics goals of the analysis
- Test of smoothness
- Review certain steps of the analysis
- Prospects

Physics. QCD fits Contact interactions Current status

Patrick Connor

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

QCD fits

Strong coupling α_S

- Textbook measurement demonstrating *asymptotic freedom* of QCD
- Discovered in 1973 by a 22-year-old doctoral student Frank WILCZEK (Nobel Prize in 2004)^a
- Upcoming measurements will allow to reach the highest scales ever (« atto-scopy », 10^{-19} m);

 aWith D. ${\rm GROSS}$ and independently by D. ${\rm POLITZER}$

Patrick Connor

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

QCD fits

Strong coupling α_S

- Textbook measurement demonstrating *asymptotic freedom* of QCD
- Discovered in 1973 by a 22-year-old doctoral student Frank WILCZEK (Nobel Prize in 2004)^a
- Upcoming measurements will allow to reach the highest scales ever (« atto-scopy », 10^{-19} m);

 aWith D. ${\rm GROSS}$ and independently by D. ${\rm POLITZER}$

Note

 \longrightarrow correlated with PDFs, so one should fit both together...

Patrick Connor

Introduction Physics

QCD fits

status Smoothness

Analysis

Summary &

Prospects Back-up

interactions Current

QCD fits

Extraction of PDFs

- PDFs were first measured in *ep* collisions at HERA.
- Improves the PDFs at high momentum fraction x and at high scale Q^2 .
- \longrightarrow Planning to use also (already published) $t\bar{t}$ data and extract m_t along α_S and PDFs!

Patrick Connor

Contact interactions

Introduction

- Physics QCD fits Contact interaction Current status
- Smoothness
- Analysis
- Summary & Prospects
- Back-up

Work in progress...

Inclusive jet Patrick Connor

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

Only published measurement for $\sqrt{s} = 13 \text{ TeV}$ performed on early data with very low luminosity [1].

Current status

Inclusive jet Patrick Connor

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

Published result

Only published measurement for $\sqrt{s} = 13 \text{ TeV}$ performed on early data with very low luminosity [1].

Current status

Problem

Non-statistical fluctuations in data

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

Published result

Only published measurement for $\sqrt{s} = 13 \text{ TeV}$ performed on early data with very low luminosity [1].

Current status

Problem

Non-statistical fluctuations in data

 $\rightarrow \alpha_S$ and PDF fit

Introduction

Physics QCD fits Contact interactions Current status

Smoothness

Analysis

Summary & Prospects

Back-up

Only published measurement for $\sqrt{s} = 13 \text{ TeV}$ performed on early data with very low luminosity [1].

Current status

Problem

Non-statistical fluctuations in data

 $\longrightarrow \alpha_S$ and PDF fit

ATLAS data also suffer from such fluctuations...

Patrick Connor

Introduction

Physics QCD fits Contact interactions Current

status

Smoothness

Analysis

Summary & Prospects

Back-up

Available on the CMS information server

CMS AN-19-167

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2020/01/07 Archive Hash: 32f0fc2 Archive Date: 2020/01/07

Inclusive jet production at 13 TeV with 2016 data

Patrick L.S. CONNOR, Luis Ignacio ESTEVEZ BANOS, Hannes JUNG, and Radek ŽLEBČÍK Deutsches Elektronen-Synchrotron (DE)

Abstract

We present the measurement of the double differential cross section in transverse momentum and absolute rapidity of inclusive jet production with CMS 2016 data.

This box is only visible in draft mode. Please make sure the values below make sense.		
PDFAuthor:	Patrick L.S. Connor, Luis Ignacio Estevez Banos, Hannes Jung, Radek Zleb- cik	
PDFTitle: PDFSubject:	Inclusive jet production at 13 TeV with 2016 data CMS	
PDFKeywords:	CMS, physics, QCD, jet, proton, collisions, PDF, NLO, NNLO, NLL	
Please also verif	v that the abstract does not use any user defined symbols	

Note

The inclusive jet measurement is basically the baseline of many jet measurements.

Current status

 \longrightarrow inclusive b jet measurement...

Patrick Connor

Introduction

Physics QCD fits Contact interactions Current

Smoothness

Analysis

Summary & Prospects

Back-up

Available on the CMS information server

CMS AN-19-167

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2020/01/07 Archive Hash: 32f0fc2 Archive Date: 2020/01/07

Inclusive jet production at 13 TeV with 2016 data

Patrick L.S. CONNOR, Luis Ignacio ESTEVEZ BANOS, Hannes JUNG, and Radek ŽLEBČÍK Deutsches Elektronen-Synchrotron (DE)

Abstract

We present the measurement of the double differential cross section in transverse momentum and absolute rapidity of inclusive jet production with CMS 2016 data.

This box is only visible in draft mode. Please make sure the values below make sense.		
PDFAuthor:	Patrick L.S. Connor, Luis Ignacio Estevez Banos, Hannes Jung, Radek Zleb- cik	
PDFTitle:	Inclusive jet production at 13 TeV with 2016 data	
PDFSubject:	CMS	
PDFKeywords:	CMS, physics, QCD, jet, proton, collisions, PDF, NLO, NNLO, NLL	
PDFKeywords:	CMS, physics, QCD, jet, proton, collisions, PDF, NLO, NNLO, NLL	

Note

The inclusive jet measurement is basically the baseline of many jet measurements.

 \longrightarrow inclusive b jet measurement...

In the next slides

- First smoothing
- Then review certain steps of the analysis
- Emphasise on the findings of the last months

Current status

7/19

Smoothness.

Problem Chebyshev polynomials Fit procedure Example Discussion

Patrick Connor

Introduction

Physics

Smoothness Problem

- Chebyshev polynomials Fit procedure
- Example Discussion

Analysis

Summary & Prospects

Back-up

« Logarithmic scale can hide monsters. »

• Realised last summer when trying first QCD fits that the statistical uncertainties were not enough to describe bin-to-bin fluctuations.

Smoothness

In Run-I paper, 1% uncertainties were used due to differences in trigger efficiency.

Patrick Connor

- Introduction
- Physics
- Smoothness Problem Chebyshev
- polynomials Fit procedure
- Example
- Discussion
- Analysis
- Summary & Prospects
- Back-up

$\begin{array}{c} 1.2 \\ 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ -0.2 \\ -0.4 \\ 1.0 \\ -0.5 \\ 0.0 \\ 0.5 \\ 1.0 \end{array}$

Bin-to-bin uncorrelated systematic uncertainties? « Logarithmic scale can hide monsters. »

- Realised last summer when trying first QCD fits that the statistical uncertainties were not enough to describe bin-to-bin fluctuations.
- In Run-I paper, 1% uncertainties were used due to differences in trigger efficiency.

Goal

Find an analytical function to fit the spectrum in order to find non-statistical fluctuations.

Smoothness

Difficulties

- Runge phenomenon
- Many parameters

 \longrightarrow standard polynomials $\sum a_i x_i^i$ don't work well for these two reasons (at least!).

Patrick Connor

Introduction

Physics

Smoothness Problem Chebyshev polynomials Fit procedure Example Discussion

Analysis

Summary & Prospects

Back-up

Definition

 $f_n(x) = \sum_{i=0}^n b_i T_i(x)$ where $T_0(x) = 1$, $T_1(x) = x$ and $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Interesting properties

- Robust against Runge phenomenon.
- f_n is a good approximation of f_{n+1} .

Chebyshev polynomials

Fit procedure

« Greta » fit

$$f_n(p_T) = \exp\left(\sum_{i=0}^n b_i T_i \left(2\frac{\log p_T / \log p_T^{\mathsf{min}}}{\log p_T^{\mathsf{max}} / \log p_T^{\mathsf{min}}} - 1\right)\right)$$

- \longrightarrow robust fit is possible with an $iterative\ method:$
 - 1 guess the two first parameters from the first and last points of the spectrum;
 - 2 add release one more parameter (assume zero), as and fit all parameters;
 - **3** iterate until a satisfactory χ^2 is found.

Inclusive jet

Patrick Connor

Physics Smoothness Problem Chebyshev polynomials Fit procedure Example Discussion Analysis

Summary & Prospects

Back-up

Fit procedure

« Greta » fit

$$f_n(p_T) = \exp\left(\sum_{i=0}^n b_i T_i \left(2\frac{\log p_T / \log p_T^{\mathsf{min}}}{\log p_T^{\mathsf{max}} / \log p_T^{\mathsf{min}}} - 1\right)\right)$$

\longrightarrow robust fit is possible with an **iterative method**:

- 1 guess the two first parameters from the first and last points of the spectrum;
- 2 add release one more parameter (assume zero), as and fit all parameters;
- 3 iterate until a satisfactory χ^2 is found.

Inclusive jet

Patrick Connor

Introduction Physics

Smoothness Problem Chebyshev polynomials Fit procedure Example Discussion

Analysis

Summary & Prospects

10/19

Back-up

Patrick Connor

Introduction

Physics

- Smoothness Problem Chebyshev polynomials Fit procedure Example
- Discussion Analysis
- Summary & Prospects
- $\mathsf{Back}\mathsf{-up}$

Example

Discussion

Inclusive jet

- Patrick Connor
- Introduction
- Physics
- Smoothness Problem Chebyshev polynomials Fit procedure Example Discussion

Analysis

Back-up

Summary & Prospects

Current limitations

- Using jet statistics and ignoring correlations, while it would be more correct to consider event statistics.
- Fitting rapidity bins separately.

 \longrightarrow working on it!

Analysis.

Outline Selecta capita Other (solved) issues

Outline

Inclusive jet

Patrick Connor

Introduction

Physics

- Smoothness
- Analysis Outline
- Selecta capita
- Other (solved) issues

Summary & Prospects

Back-up

COPA DESY.

13/19

MC

- Normalise to cross sections.
- Remove bad pile-up simulation.
 - Apply JES corrections.
- Smear to match JER in data.
- Apply PU profile reweighting.
- Apply MET filters.
- Remove hot regions.
- Simulate prefiring issue.

Conventions

bold test of smoothness in the next slides;

italic improved in the last months & summarised later in the presentation;

crossed-out probably removed for the measurement.

Data

- Apply JES corrections.
- Combine triggers.
- Normalise to integrated luminosity.
- Apply MET filters.
- Remove hot regions.
- Unfold.

Selecta capita

JES corrections

Patrick Connor

Inclusive jet

Physics

Smoothness

Analysis Outline

Outline

Other (solved) issues

Summary & Prospects

Back-up

14/19

Patrick Connor

Introduction

Physics

- Smoothness
- Analysis
- Outline
- Selecta capita
- Other (solved) issues
- Summary & Prospects
- Back-up

Selecta capita

 $\begin{array}{l} \mbox{raw}\ \mu = 0.0 \pm 0.0, \ \sigma = 0.3 \pm 0.0 & \mbox{raw}\ \mu = 0.0 \pm 0.0, \ \sigma = 0.2 \pm 0.0 & \mbox{raw}\ \mu = 0.0 \pm 0.0, \ \sigma = 0.3 \pm 0.0 & \mbox{raw}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.6 \pm 0.1 & \mbox{raw}\ \mu = -0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.0, \ \sigma = 0.2 \pm 0.0 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.0 \pm 0.1, \ \sigma = 0.5 \pm 0.1 & \mbox{smooth}\ \mu = 0.1 \pm 0.2, \ \sigma = 1.2 \pm 0.2 & \mbox{smooth}\ \mu = 0.1 \pm 0.2 & \mbox{smooth}\ \mu = 0.2 & \mbo$

Patrick Connor

- Introduction
- Physics
- Smoothness
- Analysis Outline Selecta cap
- Other (solved) issues
- Summary & Prospects
- Back-up

Selecta capita

Trigger strategy

<u>σ - Greta(σ)</u> stat. unc.

Patrick Connor

- Introduction
- Physics
- Smoothness
- Analysis Outline Selecta cap
- Other (solved) issues
- Summary & Prospects
- Back-up

Selecta capita

Patrick Connor

Introduction

Physics

Smoothness

Analysis Outline Selecta capita Other

(solved) issues

Summary & Prospects

Back-up

Short list

MC cross sections values should be taken from XSDB...

PU staub more sophisticated way(s) than traditional cut p_T^{rec} vs. \hat{p}_T (different for flat and binned samples)

Other (solved) issues

JER difference between resolutions from JetMET and resolutions from MC samples after smearing with SFs from JetMET at high p_T in 1.5 < |y| < 2.0.

PU profile reweighting if following the approach with effective luminosities, careful with generator-level spectrum (not a problem if you go for prescales)

Note

Happy to share code / knowledge!

Summary & Prospects.

Patrick Connor

- Introduction Physics
- Smoothness
- Analysis
- Summary & Prospects
- Back-up

Summary

- Goals of the ongoing analysis.
- Test of smoothness with Chebyshev polynomials.
- Overview of the analysis, focussing on smoothness.
- Outline of the recent findings.

Prospects

- Confirm smoothness of the spectrum with 2D fits accounting for correlations.
- In any case, define uncertainty on trigger, uncorrelated among rapidity bins.

Summary & Prospects

- If successful, deliver new tables in JetMET format.
- (Investigate 2D unfolding in order to have proper description of correlations among rapidity bins.)
- Deliver tables to Toni & Katerina to proceed to QCD fits (AK7 only).

Patrick Connor

- Introduction Physics
- Smoothness
- Analysis
- Summary & Prospects
- Back-up

Summary

- Goals of the ongoing analysis.
- Test of smoothness with Chebyshev polynomials.
- Overview of the analysis, focussing on smoothness.
- Outline of the recent findings.

Prospects

- Confirm smoothness of the spectrum with 2D fits accounting for correlations.
- In any case, define uncertainty on trigger, uncorrelated among rapidity bins.

Summary & Prospects

- If successful, deliver new tables in JetMET format.
- (Investigate 2D unfolding in order to have proper description of correlations among rapidity bins.)
- Deliver tables to Toni & Katerina to proceed to QCD fits (AK7 only).

Thank you for your attention!

Back-up.

Inclusive jet Patrick Connor

Glossary I

ATLAS A Toroidal LHC ApparatuS. 9–12

HERA Hadron-Elektron-RingAnlage. 7

JER Jet Energy Resolution. 24, 29

JES Jet Energy Scale. 24

MC Monte Carlo. 29

MET Missing Transverse Energy. 24

PDF Parton Distribution Function. 3, 5–7, 9–12 PU pile-up. 24, 29

QCD Quantum Chromodynamics. 5, 6, 16, 17, 31, 32

SF Scale Factor. 29

XSDB Cross sections Data Base. 29

References I

Vardan Khachatryan et al. "Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ ". In: *Eur. Phys. J.* C76.8 (2016), p. 451. DOI: 10.1140/epjc/s10052-016-4286-3. arXiv: 1605.04436 [hep-ex].

Inclusive jet

Patrick Connor