Data Driven Background Determination

Isabell-A. Melzer-Pellmann

- ttbar (mainly for high N_{jet})
- → W+Jets (mainly for low N_{jet})
- QCD multijet production

- HCAL Noise suppression
- SM MET subtraction
- α_T jet balancing method
- $\rightarrow \chi^2(ttbar)$
- → Top Box Method
- Combinatorial reconstruction of ttbar / Topbox method
- Dilepton Background (in single lepton events)
- ttbar background estimation using b-tagging
- W polarisation method
- → W background determination using Z control sample
- Suppression of signal contamination in background control regions
- Determination of correlation in ABCD method
- Fake electrons
- QCD background

Noise suppression based on precise hit timing

- → Time resolution O(1ns) for high energies, worse for lower energies
- reject events which are out of time window around event time
- window needs to have broader shape for lower energies
- MET reduction by factor 5-10

Largest backgrounds for lepton+jets+MET:

- → ttbar+jets with t→bW(lv)
- → W+jets with W→Iv

Two components to MET: artificial and v-induced

- → Artificial MET:
 - → jets, detector, beam related backgrounds,non-collision effects
 - Model MET with a pool of multi-jet QCD events based on:
 - → N_{jet} above high pT (e.g. 50 GeV or higher)
 - $\rightarrow J_T = SUM |p_TJet| \text{ with } p_T(jet) > 20 \text{ GeV}$
- v-induced MET:

Assume that the two components interfere at random angle ϕ (0- π)

- Smear charged I pT with artificial MET prediction at angle φ
- Works better for events with large N_{jet}

SM MET subtraction (2)

I – v comparison for W

Harder cut on charged lepton p_T makes v spectrum softer

needs to be corrected

W+jets as Z+jets with v treated as 2^{nd} mu using generator p_T

SM MET subtraction (3)

Prediction works best for models with soft lepton spectra

α_T jet-balancing method

Lepton isolation: key tool to reduce background from fake or heavyflavor electrons and muons;

For pT>30 GeV: standard recommendations from V+jets Cross PAG For pT<30 GeV:TrkIso_{abs}= $\sum_{\Delta R<0.3}$ p_T^{track} < 3GeV (e) or < 5 GeV (mu)

 α_T : from all-hadronic analysis to reproduce kinematics in di-jet event Idea: construct two pseudo-jets, which balance each other in H_T, where pseudo-jet H_T (scalar sum of p_T of all jets in pseudo-jet) Jets are combined in pseudo-jets by minimizing $\Delta H_T = |H_T 1 - H_T 2|$

$$\alpha_{\rm T} = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T} = \frac{1}{2} \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - MH_T^2}}$$

Completely balanced system: $\Delta H_T = 0$

Leptonic α_T : similar to all-hadronic, just including lepton in variables

α_T jet-balancing method (2)

 $H_T > 350 \text{ GeV}$ curve for α_T =0.55

Good separation power

α_T jet-balancing method (3)

Robustness of α_T for bad jet calibration (MHT not so good)

ttbar background using χ^2 (ttbar)

Construct x² by choosing the four highest pt jets and takeing the lowest x² permutation as the combination of jets assigned to hadronic W, b-jet of hadronic top, b-jet of leptonic top:

$$\chi^{2}(t\bar{t}) = \frac{(M_{j_{1}j_{2}} - M_{W})^{2}}{\sigma_{jj}^{2}} + \frac{(M_{j_{1}j_{2}j_{3}} - M_{t})^{2}}{\sigma_{jjj}^{2}} + \frac{(M_{W_{\ell\nu}j_{4}} - M_{t})^{2}}{\sigma_{\mu\nu j}^{2}}$$
$$\sigma_{ij}^{2} = 10.5, \sigma_{ijj}^{2} = 19.3, \sigma_{\mu\nu j}^{2} = 21.2$$

Masses for the lowest x²

ttbar background using χ^2 (ttbar) (2)

x²< 20: 50% ttbar 30% W+jets 2-24% SUSY

Try to mix this with 2nd variable exploiting the ABCD method

χ^2 vs MET/SUM(ET) ABCD method

Strong correlation between x2 and MET, better (3 times smaller) for

MET/SUM(ET)

$$\sum E_T = E_T + E_T^{\text{jets}}$$

ttbar background from TopBox

Calculate 2-jets (M2) and 3-jets (M3) invariant mass combinations Mi=SUM (4-Momentum(Jet) with Mass(Jet) set to 0)

look similar

Choose MC based cuts: 70<M2<110 GeV 150<M3<210 GeV

ttbar background from TopBox (2)

W+jets and QCD jets contribution:

ttbar background with χ^2 sorting and sideband subtraction

Again, use x^2 :

$$\chi^{2}(t\bar{t}) = \frac{(M_{j_{1}j_{2}} - M_{W})^{2}}{\sigma_{jj}^{2}} + \frac{(M_{j_{1}j_{2}j_{3}} - M_{t})^{2}}{\sigma_{jjj}^{2}} + \frac{(M_{W_{\ell\nu}j_{4}} - M_{t})^{2}}{\sigma_{\mu\nu j}^{2}}$$

Then use hadronic W mass for sideband subtraction (reduce SUSY signal in ttbar sample, as SUSY is relatively flat):

→ sideband: 120<M<180 GeV</p>

ttbar background tail also in sideband region

- only shape considered
- normalize sideband subtracted MET shape in low MET (50<MET<</p> 100 GeV) region where ttbar (and W+jets) backgrounds dominate

Dilepton background from ttbar

(b) MET from events with $2\nu_\mu$ and $1\nu_\mu \, \mathrm{l} \nu_e$: $MET^{2\nu_\mu+1\nu_{mu}\, 1\nu_e}_{True}$

(c) MET from events with $1\nu_{\mu} 1\nu_{\tau}$: $MET_{True}^{1\nu_{\mu} 1\nu_{\tau}}$

more next time...

MET for muons:

$$MET = \left| p_{miss} \right| = \left| -\left(\sum_{calotowers} p_T - \sum_{muons} p_T^{deposit} - \sum_{muons} p_T \right) \right|$$

 $MET = |p_{miss}| = \left| -\left(\sum_{calotowers} p_T - \sum_{muons} p_T^{deposit} - \sum_{muons} p_T\right) \right|$ are removed and replaced by the measured pT from the global track fit estimated CAL energy deposits of muons

$$H_T = \sum_{\text{4 highest pT jets}} |p_T|$$

$$M_{\it eff} = \sum_{4 \, {\rm highest \, pT \, jets}} \!\! \left| p_T \right| + p_T^{
m single \, lepton \, with \, pT > 10 GeV}$$

$$\sum E_T = E_T + jets$$