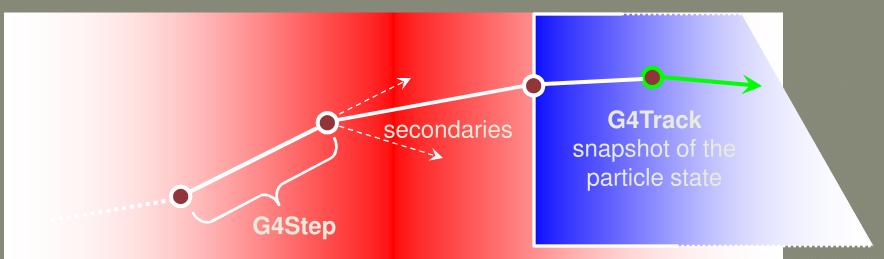
Particle definition, Process management

Geant4 tutorial MC-PAD Network Training Event 28-30 January 2010 V. Ivanchenko Adaptation of Marchenen original lecture

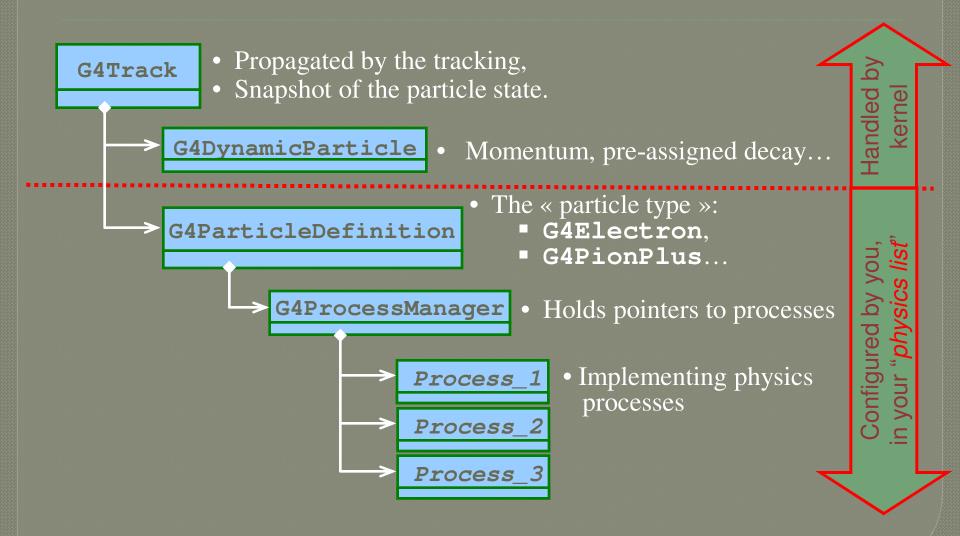
Geant4 interface to physics

The G4ParticleDefinition interface


The G4VProcess class process interface

The G4ProcessManager class

Particle and Processes by M. Verderi


Geant4 tracking

G4Track is the object "pushed" step by step by the tracking :

Moving by one step is the responsibility of the "stepping"
Which is the core engine of the "tracking" machinery
These moves/steps have to be physically meaningful
And the stepping invokes physics to realize them
This physics is attached to the G4Track, let's see how.

From G4Track to processes

G4VProcess: 3 kind of actions

Abstract class defining the common interface of all processes in Geant4:

- Used by all processes
 - including transportation, etc...
- Defined in source/processes/management
- Three kinds of actions:
 - AtRest actions:
 - Decay, e⁺ annihilation ...
 - AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;
 - **PostStep** actions:
 - For describing point-like (inter)actions, like decay in flight

AlongStep

G4VProcess : actions summary

The virtual « action » methods are following:

- AtRestGetPhysicalInteractionLength(),
 AtRestDoIt();
- AlongStepGetPhysicalInteractionLength(),
 AlongStepDoIt();
- PostStepGetPhysicalInteractionLength(),
 PostStepDoIt();

Other important virtual method:

- G4bool IsApplicable(const G4ParticleDefinition &);
 - Used to check if a process can handle the given particle type
 - It is called by the kernel when you set up your physics list

G4VProcess: extensions

A process can implement any combination of the three AtRest, AlongStep and PostStep actions:

• eg: decay = AtRest + PostStep

If you plan to implement your own process:

- A set on intermediate classes exist implementing various combinations of actions:
 - For example:
 - G4VDiscreteProcess: only PostStep actions
 - G4VContinuousDiscreteProcess:AlongStep + PostStep actions

G4ProcessManager

G4ProcessManager maintains three vectors of actions :

- One for the AtRest methods of the particle;
- One for the AlongStep ones;
- And one for the PostStep actions.
- These are these vectors you have to set up in your "physics list"
- These vectors are used by the tracking. Note that the ordering of processes provided by/to the G4ProcessManager vectors is relevant and used by the stepping
 - There are few critical points you should be aware of
 - Multiple scattering can shift end point of a step and step length
 - Scintillation, Cerenkov and some other processes assuming that step and energy deposition at the step are defined

Adding a process in physics list

Get the process manager of the particle: G4ProcessManager* pmanager = particle->GetProcessManager();

Add the process:

pmanager->AddProcess(new G4eIonisation)

- The indices provided are these of the ordering in the Dolt() vectors
- Which is by default **"EVERSE** of the ordering of the GetPhysicalInteractionLength() one ! ⁽²⁾
 - Index in AtRestDoIt () vector
 - Index in AlongStepDoIt () vector
 - Index in PostStepDoIt () vector
- There are more utility methods to add a process, but above one is probably the most clear

About process ordering

- The most strong rule for multiple-scattering and transportation.
- In your physics list, you should **always** have, for the ordering of the AlongGetPhysicalInteractionLength (...) methods:
 - Transportation last
 - For all particles
 - Multiple scattering second last
 - For charged particles only
 - assuming n processes
 [n-2] ...
 - [n-1] multiple scattering
 - [n] transportation

Why?

- Processes return a « true path length »;
- The multiple scattering folds up this length into a *shorter* « geometrical » path length;
- Based on this new length, the transportation can geometrically limits the step.

Displaying processes and particles

 When you application has started and when the run manager has been initialized, you can:

Check the physics processes attached and their ordering:

- /particle/select e-
- /particle/processes/dump

Check what particles exist: • /particle/list Check a particle property: • /particle/select e-• /particle/property/dump Please type "help" to get the full set of commands