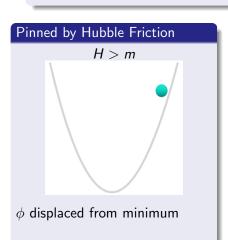
Audible Axions

Camila Machado, Wolfram Ratzinger, Pedro Schwaller and Ben Stefanek

Based on:

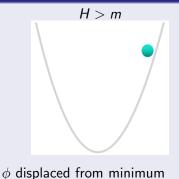

1811.01950 1912.01007

lattice results soon to come

Axion Cosmology: Misalignment Mechanism

Axion Evolution in Expanding Universe

$$\ddot{\phi} + \frac{3H\dot{\phi}}{\phi} + m^2\phi = 0$$
 (ϕ homogeneous)



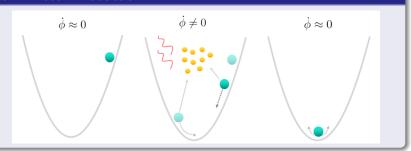
Axion Cosmology: Misalignment Mechanism

Axion Evolution in Expanding Universe

$$\ddot{\phi} + 3H\dot{\phi} + \mathbf{m}^2 \phi = 0 \qquad (\phi \text{ homogeneous})$$

Pinned by Hubble Friction

Oscillating

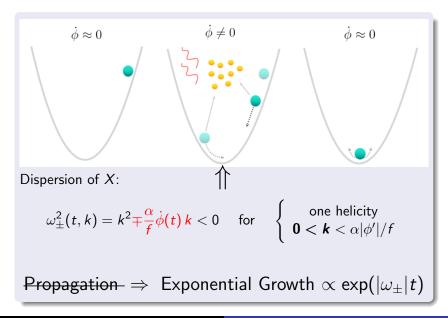

Hubble Friction \rightarrow Redshift ⇒ Cold Dark Matter

Additional Ingredient: Dark Photon

Dark Photon X + Coupling

$$\mathcal{L}\supset -rac{lpha}{4f}\phi X_{\mu
u}\widetilde{X}^{\mu
u}$$

Dark Photon Production

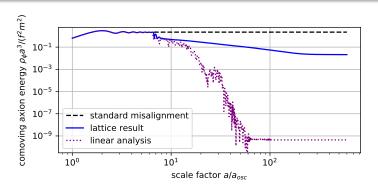


Motivation

- -Deplete Axion Abundance
- -Produce Vector DM

Agrawal et al '17, Kitajima et al '17 Agrawal et al '18

Production of Dark Photon


Lattice Results I: Less Axion Suppression

Old: Solve for DP mode functions, treat Axion as homogeneous

New: Solve E.O.M for discretized space-time

- -include all the symmetries from the continuum
- -includes full back-reaction onto axion

Figueroa et al '17

Axion inhomogenities prohibit late time suppression! Agrawal et al '17

Gravitational Waves

Before Particle Production

Quantum Fluctuations in Dark Photon Field:

$$v(\tau, k) = 1/\sqrt{2\omega} \exp(i\omega\tau)$$

Energy in Axion

→homogeneous, isotropic

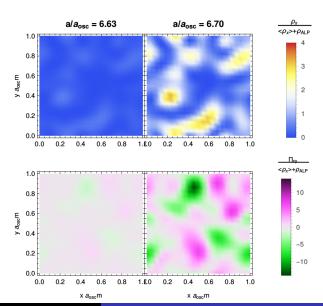
During Particle Production

Fluctuations grow exponentially:

$$v \propto \exp(|\omega|\tau)$$

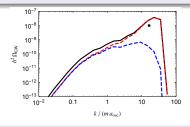
Energy in Dark Photon
→inhomogeneous, anisotropic

⇒ Particle Production leads to time-varying, anisotropic energy density that acts as source of Gravitational Waves:


Gravitational Wave
$$\rightarrow h_{ij}''(\tau,k) + k^2 h_{ij}(\tau,k) = \frac{2}{m_{\rm pl}^2} \Pi_{ij}(\tau,k) \stackrel{\leftarrow}{\swarrow}$$
 Anisotropic Stress

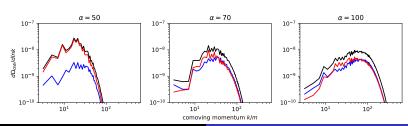
$$\Pi_{ij}(au,k) = -rac{\mathsf{\Lambda}_{ij,kl}}{\mathsf{a}^2}\intrac{d^3q}{(2\pi)^3}igl[E_k(au,q)E_l(au,k-q) + B_k(au,q)B_l(au,k-q) igr]$$

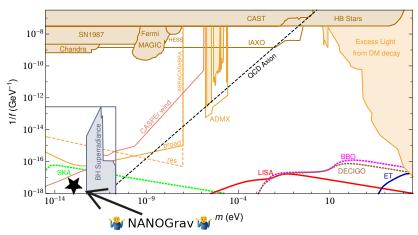
Growth of Fluctuations


Energy Density of Dark Photon

Anisotropic Stress

Lattice Results II: GW spectrum


Old, linear analysis:



New, lattice result:

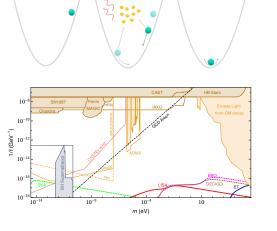
Subdominant Helicity from Re-Scatterings \Rightarrow Less Polarization

Axion Discovery Potential

\uparrow Decay Constant f

Source Strength $\Omega_{\phi} pprox \left(rac{f}{m_{
ho l}}
ight)^2$

↑ Axion Mass *m*


 $\mathsf{Mass} \Leftrightarrow \mathsf{Frequency} \Leftrightarrow \mathsf{Detector}$

Conclusion

 $\dot{\phi} \approx 0$

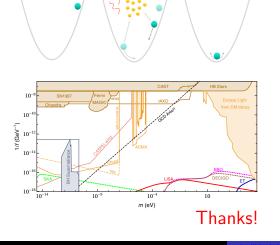
Model: Axion + Dark Photon + Coupling $rac{lpha}{4f}\phi X_{\mu\nu}\widetilde{X}^{\mu\nu}$

 $\dot{\phi} \approx 0$

 $\dot{\phi} \neq 0$

Produces:

- -Dark Photons
- -Anisotropies/GWs


Potential for Axion Discovery

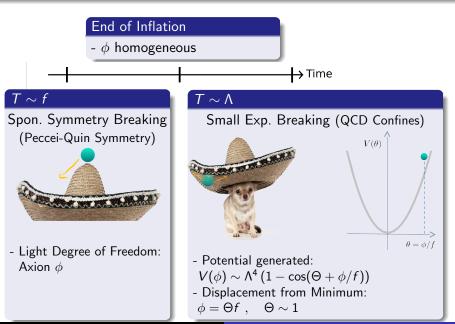
Conclusion

 $\dot{\phi} \approx 0$

Model: Axion + Dark Photon + Coupling $\frac{\alpha}{4f}\phi X_{\mu\nu}\widetilde{X}^{\mu\nu}$

 $\dot{\phi} \approx 0$

 $\dot{\phi} \neq 0$


Produces:

- -Dark Photons
- $\hbox{-} Anisotropies/GWs$

Potential for Axion Discovery

Backup

Axion Cosmology: Misalignment Mechanism

Tachyonic Band

$$\omega_{\pm}^{2}(\tau, k) = k^{2} \mp \frac{\alpha}{f} \phi'(\tau) k$$

$$\phi' \sim \phi_{osc} m \cdot a \left(\frac{a_{osc}}{a}\right)^{3/2} \cdot \cos(am \tau)$$

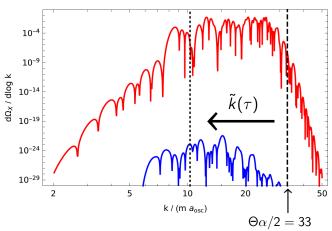
$$\hookrightarrow \text{Produced Helicity changes}$$

Efficient Tachyonic Growth:

Axion Oscillation Period am < Growth Rate $|\omega_{\pm}|$

$$\omega_+^2 < 0 \quad o \quad \omega_+^2 < -(\mathit{am})^2$$

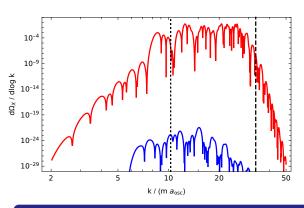
Tachyonic Band closes: $a/a_{osc} = (\theta \alpha/2)^{2/3}$

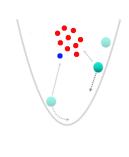

Fastest growing Mode - Peak in Photon Spectrum

$$\tilde{k}(au) = rac{lpha}{2f}\phi'(au) pprox rac{ hetalpha}{2} m \left(rac{a_{osc}}{a}
ight)^{3/2} a$$

Dark Photon Spectrum

Fastest growing Mode:


$$\tilde{k}(\tau) = \frac{\alpha}{2f} \phi'(\tau)$$



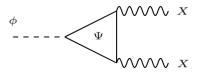
$$\Theta = 1.2$$
, $\alpha = 55$

Polarization of the Spectrum

$$\omega_{\pm}^{2}(\tau, k) = k^{2} \mp \frac{\alpha}{f} \phi'(\tau) k \qquad v_{\pm} \propto \exp(|\omega_{\pm}|\tau)$$

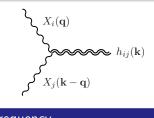
Parity Violation

 $\langle \phi \rangle \neq 0$


_

Polarized Spectrum

Axion - Dark Photon coupling


Starting from shift-symmetric coupling to ferminons that carry dark charge e_d , using P.I. and fermion EoM:

$$\frac{1}{2} \; \frac{\partial^{\mu} \phi}{f} \; \overline{\Psi} \gamma_{\mu} \gamma_{5} \Psi = -\frac{m_{\Psi}}{f} \; \phi \; \overline{\Psi} i \gamma_{5} \Psi + \frac{N_{\Psi} e_{d}^{2}}{16 \pi^{2}} \frac{\phi}{f} X_{\mu\nu} \widetilde{X}^{\mu\nu}$$

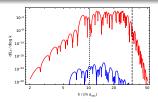
 \Rightarrow Easiest way to get $\alpha > 1$, is large number of fermions N_{Ψ}

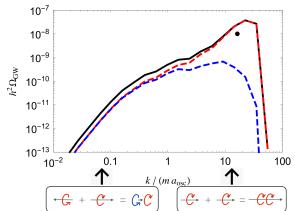
Features of the GW Spectrum

Peak Momentum/Frequency

$$k_{
m peak} \sim \sqrt{2} ilde{k} \leftarrow {
m Dark \ Photon \ Peak}$$
 $\sim m \ (heta lpha)^{2/3}$ $\hookrightarrow {
m Axion \ Mass } \ m \ {
m determines \ Peak \ Frequency}$

Peak Amplitude


$$\frac{d\,\Omega_{\rm GW}}{d\log k}(k_{peak}) \approx \Omega_X^2 \left(\frac{H}{k_{peak}}\right)^2 \approx \left(\frac{f}{m_{\rm pl}}\right)^4 \left(\frac{\theta^2}{\alpha}\right)^{4/3}$$


$$\Omega_X \approx \Omega_\phi \approx \left(\frac{\Theta f}{m_{\rm pl}}\right)^2 \qquad \qquad \hookrightarrow f \text{ determines Peak Amplitude}$$

$$\hookrightarrow f \gtrsim 10^{17} \text{ GeV for Detectable Signal}$$

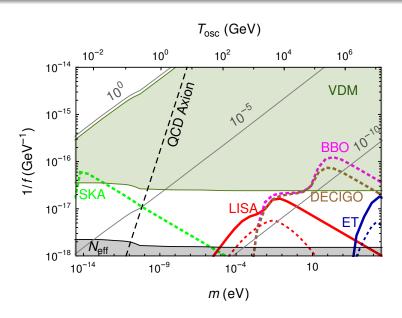
Features of the GW Spectrum: Chirality

Polarization of dark Photon Spectrum causes the Peak of the GW Spectrum to be polarized as well

GW Redshift

Frequency

$$f_0 = rac{k}{a_0} = \left(rac{g_{s,\mathrm{eq}}}{g_{s,\mathrm{osc}}}
ight)^{rac{1}{3}} \left(rac{T_0}{T_{\mathrm{osc}}}
ight) rac{k}{a_{\mathrm{osc}}}$$


For the peak:

$$\begin{split} f_0^{\rm peak} &\approx (\theta \alpha)^{\frac{2}{3}} \; T_0 \; \left(\frac{g_{s,\rm eq}}{g_{s,*}}\right)^{\frac{1}{3}} \left(\frac{m}{m_{\rm pl}}\right)^{\frac{1}{2}} \\ &\approx 6 \times 10^{-4} \; {\rm Hz} \; \left(\frac{\alpha \theta}{66}\right)^{\frac{2}{3}} \left(\frac{m}{10 \, {\rm meV}}\right)^{\frac{1}{2}} \; . \end{split}$$

Amplitude

$$\begin{split} \Omega_{\rm GW}^0 &= \Omega_{\rm GW}^* \left(\frac{g_{s,\rm eq}}{g_{s,*}}\right)^{\frac{4}{3}} \left(\frac{g_{\rho,*}}{g_{\rho,0}^{\gamma}}\right) \Omega_{\gamma}^0 \\ &\approx 1.67 \times 10^{-4} \, g_{\rho,*}^{-1/3} \, \Omega_{\rm GW}^* \,. \end{split}$$

Paramterspace/Constraints

