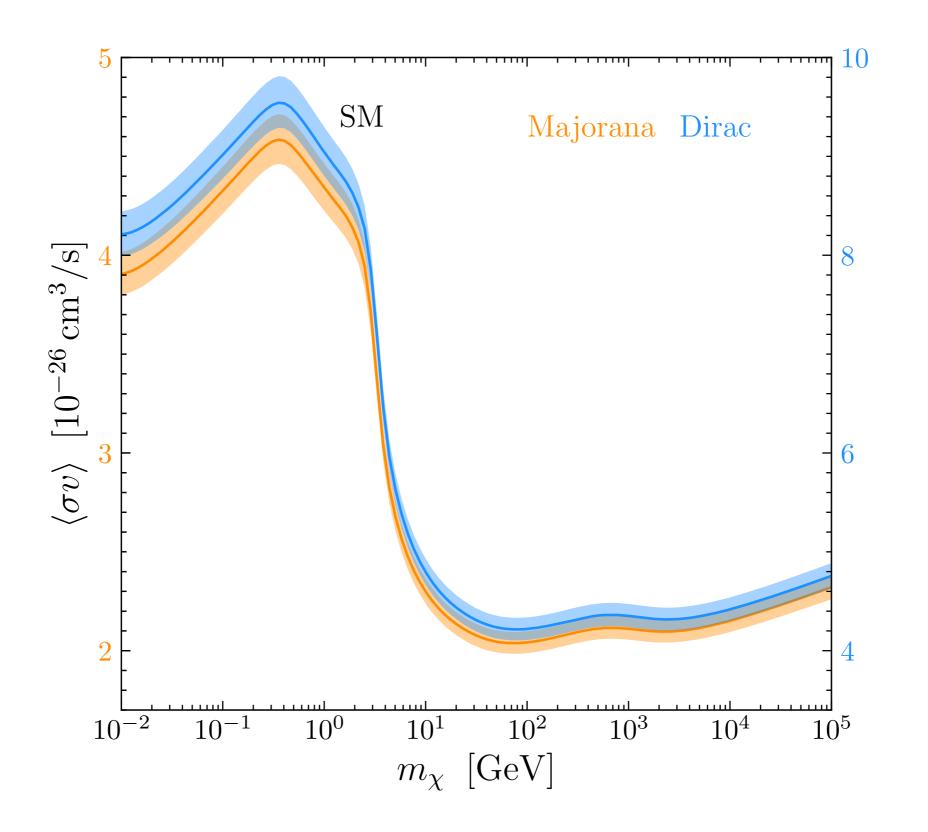
Precise dark matter relic abundance in decoupled sectors

Based on 2007.03696

Paul Frederik Depta In collaboration with Torsten Bringmann, Marco Hufnagel, and Kai Schmidt-Hoberg 22 September 2020 DESY Virtual Theory Forum 2020

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

European Research Council Established by the European Commission



Outline

- Standard freeze-out
- Freeze-out in dark sector with massless states
- Freeze-out in dark sector with massive states
- Summary

erc | Precise dark matter relic abundance in decoupled sectors | Paul Frederik Depta | 22 September 2020

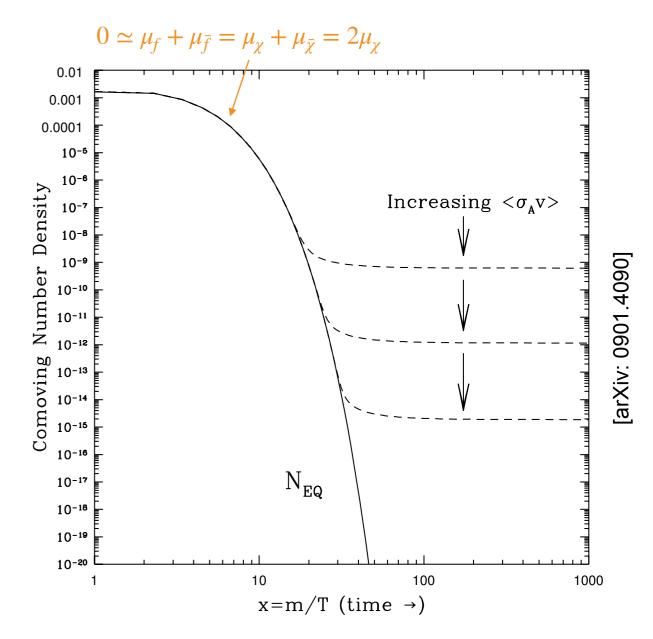
Standard freeze-out

- DM annihilations $\chi \bar{\chi} \rightleftharpoons f \bar{f}$ into SM
- Boltzmann equation ($i \in \chi, \bar{\chi}$)

•
$$\dot{n}_i + 3Hn_i = \langle \sigma v \rangle (n_{\chi,eq} n_{\bar{\chi},eq} - n_{\chi} n_{\bar{\chi}})$$

$$n_{\chi,\text{eq}} = n_{\bar{\chi},\text{eq}} \simeq g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} \exp\left(-\frac{m_{\chi}}{T}\right)$$
for $m_{\chi} < T/3$

• DM initially in equilibrium with SM



erc | Precise dark matter relic abundance in decoupled sectors | Paul Frederik Depta | 22 September 2020

Standard freeze-out

- DM annihilations $\chi \bar{\chi} \rightleftharpoons f \bar{f}$ into SM
- Boltzmann equation ($i \in \chi, \bar{\chi}$)

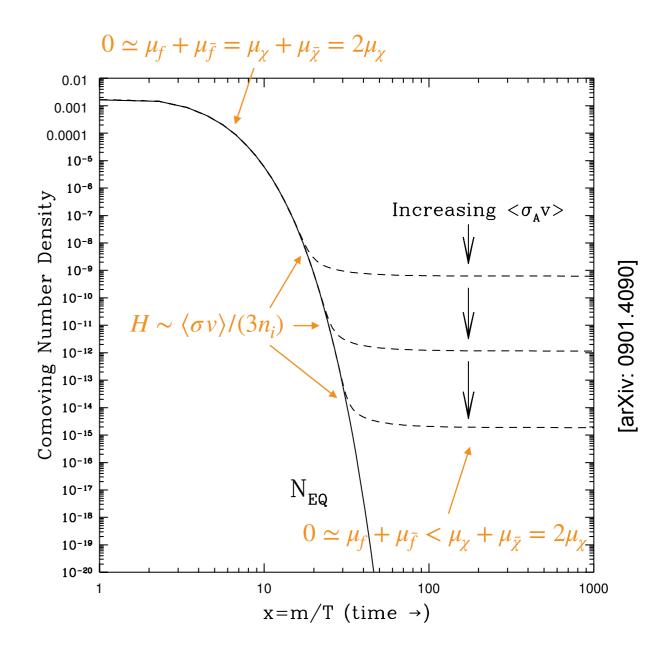
•
$$\dot{n}_i + 3Hn_i = \langle \sigma v \rangle (n_{\chi,eq} n_{\bar{\chi},eq} - n_{\chi} n_{\bar{\chi}})$$

$$n_{\chi,\text{eq}} = n_{\bar{\chi},\text{eq}} \simeq g_{\chi} \left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} \exp\left(-\frac{m_{\chi}}{T}\right)$$

for $m_{\chi} < T/3$

- DM initially in equilibrium with SM
- Annihilations freeze out when $H \sim \langle \sigma v \rangle / (3n_i)$

- Chemical decoupling, still the same temperature (kinetic equilibrium)
- Chemical potential develops for $\chi, \bar{\chi}$



Freeze-out in dark sector with massless states

- Assume massless scalar *S*, g_S degrees of freedom, chemical potential $\mu_S = 0$
- DS in equilibrium with SM until decoupling temperature T_{dec}
- Temperature in dark sector T_{γ} evolves according to entropy conservation
- DM annihilations $\chi \bar{\chi} \rightleftharpoons SS$

DESY.

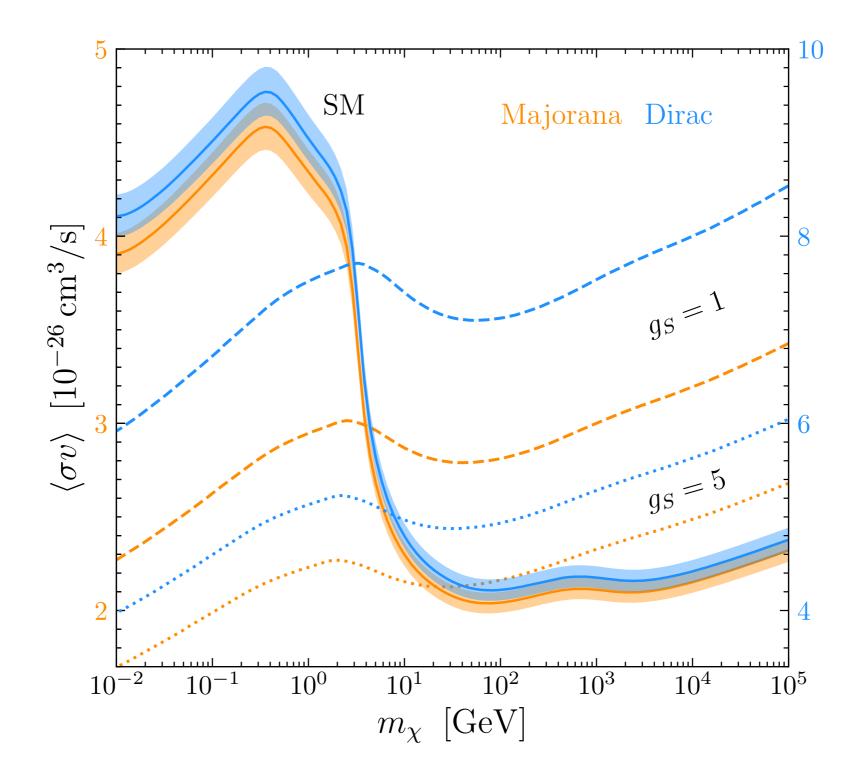
• Boltzmann equation needs to be changed in the following way:

•
$$\dot{n}_i + 3Hn_i = \langle \sigma v \rangle (n_{\chi,eq} n_{\bar{\chi},eq} - n_{\chi} n_{\bar{\chi}})$$

Include DS Evaluate at T_{χ}

Freeze-out in dark sector with massless states

Results for $\langle \sigma v \rangle$ s-wave



Freeze-out in dark sector with massive states

- $m_S = 0 \Rightarrow$ number-changing interactions in equilibrium, e.g. $\chi \bar{\chi} \Leftrightarrow \chi \bar{\chi} S \Rightarrow \mu_S = 0$
- $m_{\chi} \gtrsim m_S > 0 \Rightarrow$ number-changing interactions decouple \Rightarrow all particles build up chemical potential
- Kinetic equilibrium \Rightarrow Fermi-Dirac and Bose-Einstein distribution functions with temperature T_{χ} and chemical potentials $\mu_{\chi} = \mu_{\bar{\chi}}, \mu_{S}$
- Temporal evolution governed by $(N_{\chi} = 1(2) \text{ for Majorana (Dirac)})$:

•
$$\dot{n}_i + 3Hn_i = \mathfrak{C}/N_{\chi}, \ \dot{n}_S + 3Hn_S = -\mathfrak{C}$$

•
$$\mathfrak{C} \sim \int |\overline{\mathcal{M}}_{\chi\bar{\chi}\to SS}|^2 [f_S f_{S'}(1-f_{\chi})(1-f_{\bar{\chi}}) - f_{\chi} f_{\bar{\chi}}(1+f_S)(1+f_{S'})] \times \dots$$

•
$$\dot{\rho}_{\rm DS} + 3H(\rho_{\rm DS} + P_{\rm DS}) = 0$$

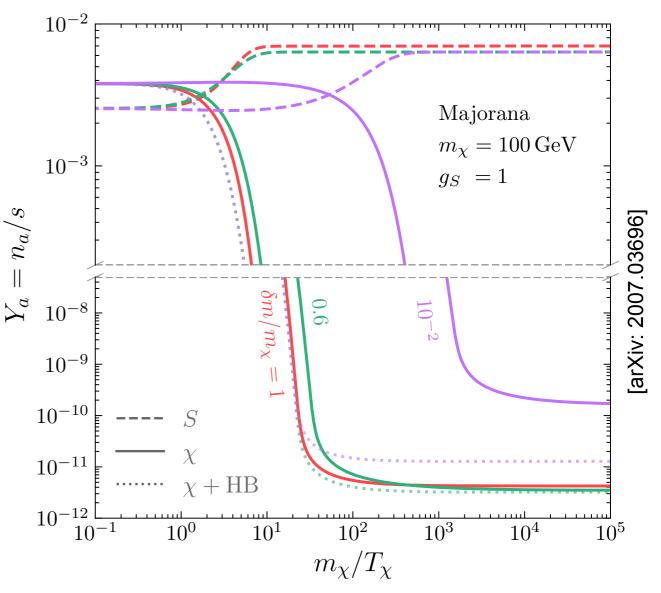
DESY.

• In the following $|\overline{\mathcal{M}}_{\chi\bar{\chi}\to SS}|^2 = \text{const}$ as benchmark

Freeze-out in dark sector with massive states

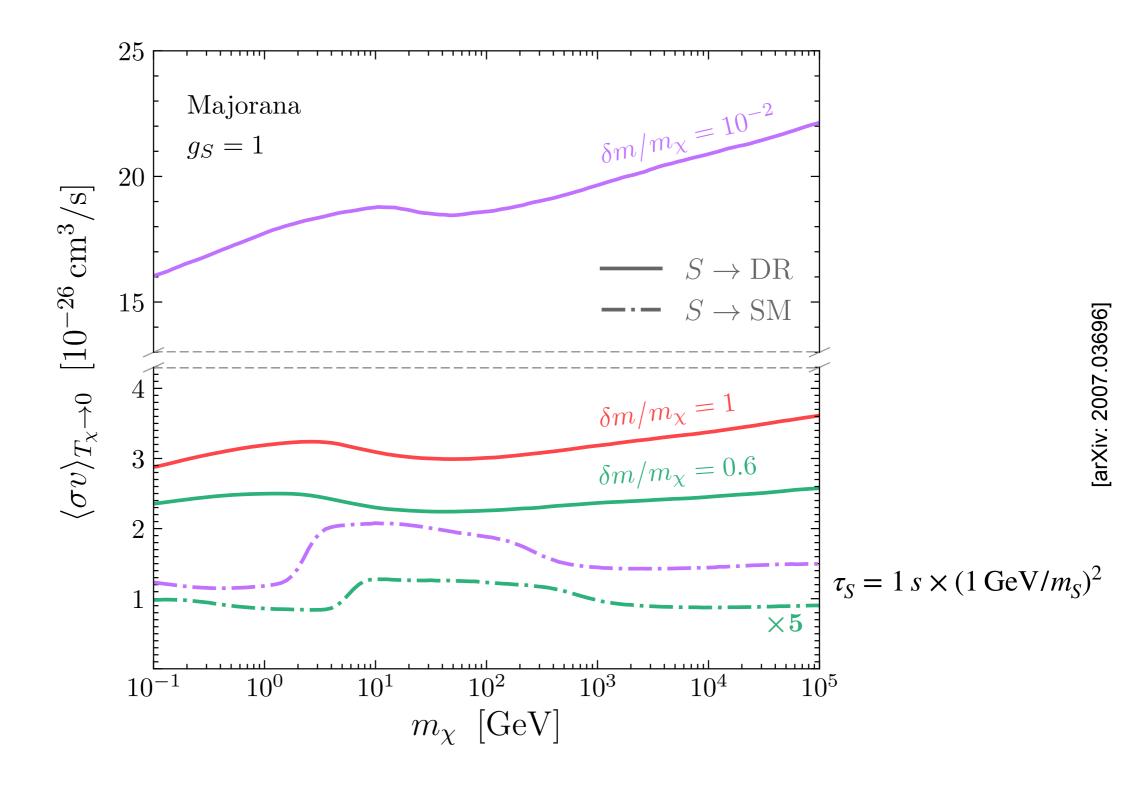
Evolution of particle abundances

- Different $\delta m/m_{\chi} = (m_{\chi} m_S)/m_{\chi}$, same $|\overline{\mathcal{M}}_{\chi\bar{\chi}\to SS}|^2$
- Rise in chemical potentials compensates would-be Boltzmann suppression when $\chi, \bar{\chi}$, and *S* become non-relativistic
- Boltzmann suppression of χ , $\bar{\chi}$ only once $T_{\chi} \sim \delta m$
- Combination of different effects (n_S smaller, evolution of μ_S , kinematic impact of m_S on \mathfrak{C} , "late" freeze-out) leads to small decrease in Y_{χ} up to $\delta m/m_{\chi} \sim 0.6$ and increase for smaller $\delta m/m_{\chi}$



Freeze-out in dark sector with massive states

Results for $\langle \sigma v \rangle_{T_{\gamma} \to 0}$



Summary

- Framework for precision calculations of DM freeze-out in decoupled sectors
- Benchmark lines for massless *S*
- Large difference to standard treatment for massive *S*, but model dependent

Thank you