On the Phenomenology of the GRSMEFT

Maximilian Dichtl

In collaboration with Maximilian Ruhdorfer, Javi Serra, Andreas Weiler

DESY Theory Workshop 2020

Outline

- Motivation
- The GRSMEFT
- Matching to toy UV model
- Testing GRSMEFT at LHC
- Bounds from jet + MET searches

Motivation

- Gravity is related to many fundamental problems in physics
 - Dark Matter
 - Quantum Gravity
 - Cosmological constant problem ($\Lambda_{cc} \ll M_{\rm Pl}^4$)
 - Electroweak hierarchy problem ($v^2 \ll M_{\rm Pl}^2$)
- We should test gravity by all means possible!

Motivation

- Experiments will be sensitive to low Λ
 - Gravitational waves: BH mergers [Endlich, Gorbenko, Huang, Senatore $\frac{1}{\Lambda^4}(C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma})^2$, $\Lambda\gtrsim\frac{1}{R_e}\sim\frac{1}{100~\mathrm{km}}\sim10^{-12}~\mathrm{eV}$

Torsion-balance detector

$$\Lambda \gtrsim \frac{1}{d} \sim \frac{1}{50 \ \mu \text{m}} \sim 10^{-3} \text{ eV}$$

The GRSMEFT

The most general EFT of gravity coupled to the SM

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_{Pl}^2}{2} R + \mathcal{L}_{matter} + \sum_{n} \frac{c_n}{\Lambda^{n-4}} \mathcal{L}_n \right]$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{2}{M_{Pl}} h_{\mu\nu}$$

$$-\frac{1}{M_{Pl}} h_{\mu\nu} T^{\mu\nu}$$

$$M_{Pl} = 2.435 \cdot 10^{18} \text{ GeV}$$

The GRSMEFT

Gravitational degrees of freedom in Riemann tensor

$$R_{\mu\nu\rho\sigma} \sim (\mathbf{0}, \mathbf{0}) \oplus (\mathbf{1}, \mathbf{1}) \oplus (\mathbf{2}, \mathbf{0}) \oplus (\mathbf{0}, \mathbf{2})$$

$$R \qquad R_{\mu\nu} - \frac{1}{4}Rg_{\mu\nu} \qquad C_{\mu\nu\rho\sigma}^{L,R} = \frac{1}{2}(C_{\mu\nu\rho\sigma} \pm i\tilde{C}_{\mu\nu\rho\sigma})$$

$$C_{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma} - (g_{\mu[\rho}R_{\sigma]\nu} - g_{\nu[\rho}R_{\sigma]\mu}) + \frac{1}{3}g_{\mu[\rho}g_{\sigma]\nu}R$$

Einstein equations (EOM)

$$R_{\mu\nu} = \frac{1}{M_{Pl}^2} \left(T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu} \right), \qquad R = g^{\mu\nu} R_{\mu\nu} = -\frac{1}{M_{Pl}^2} T$$

Operators with Ricci tensor and Ricci scalar can be redefined as pure matter operators

The GRSMEFT

Operator terms of dimension 6

$$\mathcal{L}_{6} = \frac{c_{1}}{\Lambda^{2}} C_{\mu\nu}{}^{\rho\sigma} C^{\mu\nu\alpha\beta} C_{\alpha\beta\rho\sigma} + \frac{\tilde{c}_{1}}{\Lambda^{2}} C_{\mu\nu}{}^{\rho\sigma} C^{\mu\nu\alpha\beta} \tilde{C}_{\alpha\beta\rho\sigma}$$

$$+ \frac{c_{2}}{\Lambda^{2}} \mathcal{H}^{\dagger} \mathcal{H} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} + \frac{\tilde{c}_{2}}{\Lambda^{2}} \mathcal{H}^{\dagger} \mathcal{H} C_{\mu\nu\rho\sigma} \tilde{C}^{\mu\nu\rho\sigma}$$

$$+ \frac{c_{3}}{\Lambda^{2}} B^{\mu\nu} B^{\rho\sigma} C_{\mu\nu\rho\sigma} + \frac{\tilde{c}_{3}}{\Lambda^{2}} B^{\mu\nu} B^{\rho\sigma} \tilde{C}_{\mu\nu\rho\sigma}$$

$$+ \frac{c_{4}}{\Lambda^{2}} G^{\mu\nu} G^{\rho\sigma} C_{\mu\nu\rho\sigma} + \frac{\tilde{c}_{4}}{\Lambda^{2}} G^{\mu\nu} G^{\rho\sigma} \tilde{C}_{\mu\nu\rho\sigma}$$

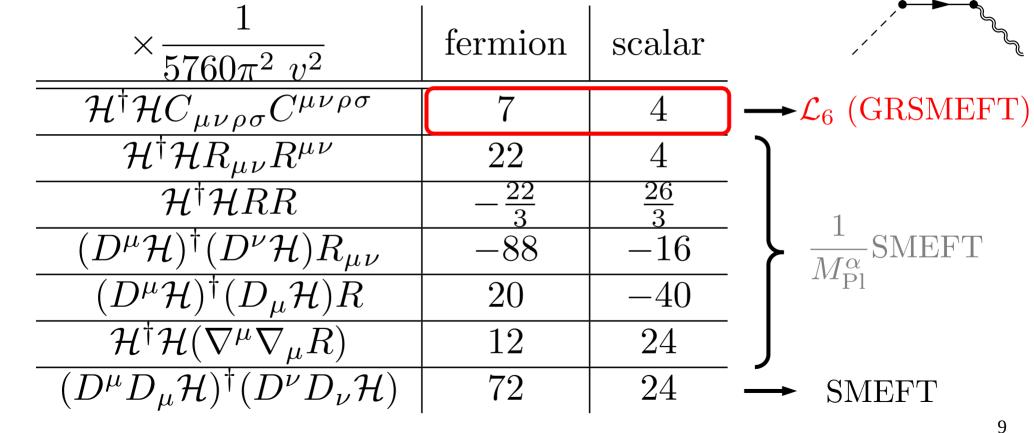
$$+ \frac{c_{5}}{\Lambda^{2}} W^{\mu\nu} W^{\rho\sigma} C_{\mu\nu\rho\sigma} + \frac{\tilde{c}_{5}}{\Lambda^{2}} W^{\mu\nu} W^{\rho\sigma} \tilde{C}_{\mu\nu\rho\sigma}$$

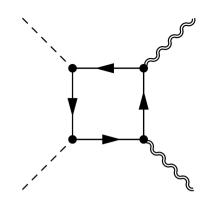
Pure Gravity

Matter couplings beyond the SM

Matching to toy UV completion

Heavy fermion and heavy scalar charged under SU(3)_c


$$\mathcal{L}_{UV} = \mathcal{L}_f + \mathcal{L}_{sc} + \mathcal{L}_{Higgs} + \mathcal{L}_{QCD}$$


$$\mathcal{L}_f = \bar{\psi} i \not\!\!D \psi - \frac{\sqrt{2}m}{v} \bar{\psi}_L \mathcal{H} \psi_R + \text{h.c.}$$

$$\mathcal{L}_{sc} = (D_\mu \phi)^\dagger D^\mu \phi - \frac{2m^2}{v^2} (\mathcal{H}^\dagger \mathcal{H}) (\phi^\dagger \phi)$$

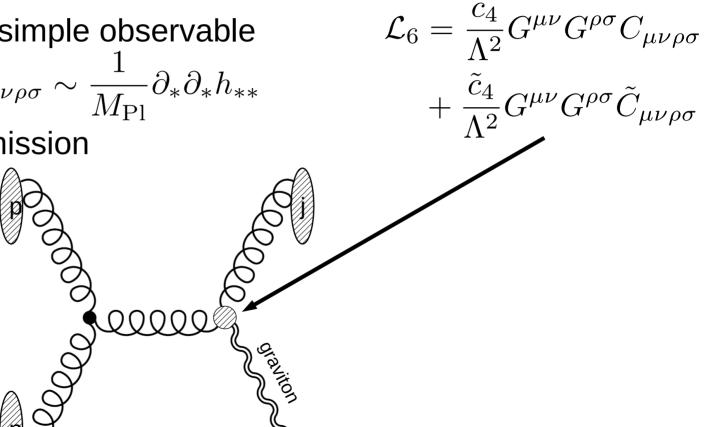
 After integrating out heavy d.o.f.s, GRSMEFT is an expansion in m and M_{PI}

Matching to $\mathcal{H}^{\dagger}\mathcal{H}C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$

Matching to $C^{\mu\nu\rho\sigma}G_{\mu\nu}G_{\rho\sigma}$

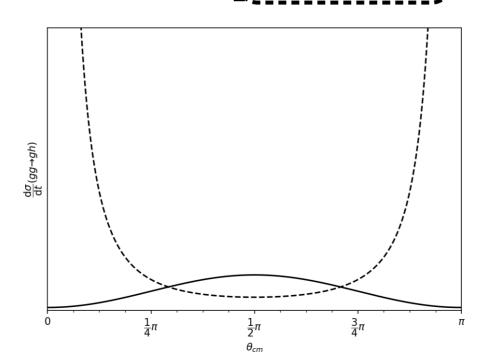
$\times \frac{T_F \cdot \alpha_s}{720\pi \ m^2}$	fermion	scalar	_
$g_s f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	-2	1	\longrightarrow SMEFT
$C^{\mu u ho\sigma}G_{\mu u}G_{ ho\sigma}$	-2	1	$\longrightarrow \mathcal{L}_6 \text{ (GRSMEFT)}$
$R^{\mu\nu}g^{\rho\sigma}G_{\mu\rho}G_{\nu\sigma}$	22	4	$\xrightarrow{1}$ SMEFT
$Rg^{\mu\nu}g^{\rho\sigma}G_{\mu\rho}G_{\nu\sigma}$	$-\frac{13}{3}$	$\frac{13}{6}$	$\longrightarrow M_{\rm Pl}^{\alpha}$
$(abla^{\mu}G_{\mu\lambda})^2$	-24	-3	→ SMEFT

Matching to toy UV completion

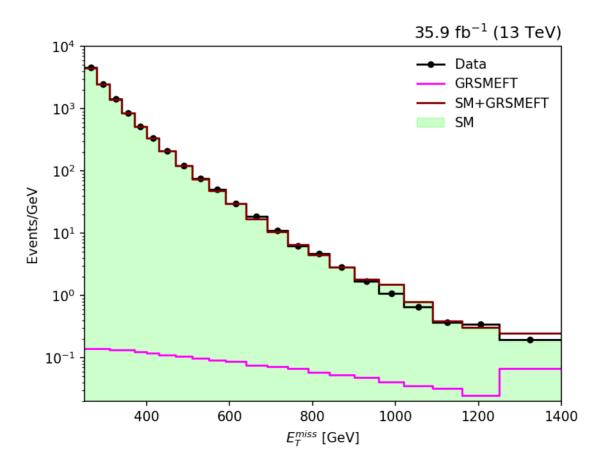

N copies of the heavy fermion / scalar with mass m

$$rac{c_i}{\Lambda^2} \sim rac{N}{m^2} \longrightarrow ext{ Large coefficient / small } \Lambda$$

- In general we would like to be agnostic about the UV completion!
- We assume that GRSMEFT operators are the only generated operators


Testing GRSMEFT at the LHC

- Want to explore simple observable
- M_{Pl} is large! $C_{\mu\nu\rho\sigma}\sim {1\over M_{\rm Pl}}\partial_*\partial_*h_{**}$
- Real graviton emission



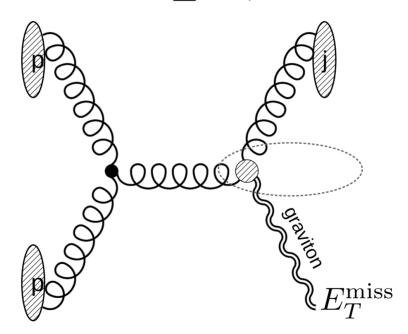
Parton Level Amplitude

$$\frac{d\sigma}{dt}(gg \to gh) = \frac{3\alpha_s}{32} \frac{1}{s^2} \frac{1}{M_{\rm Pl}^2} \left[\frac{s^4 + t^4 + u^4}{stu} \right] + \frac{2(c_4^2 + \tilde{c}_4^2)}{\Lambda^4} stu$$

CMS Search for jet + MET

Bounds from CMS

$$\bullet \quad \mathcal{L}_6 = \frac{c_4}{\Lambda^2} G^{\mu\nu} G^{\rho\sigma} C_{\mu\nu\rho\sigma} + \frac{\tilde{c}_4}{\Lambda^2} G^{\mu\nu} G^{\rho\sigma} \tilde{C}_{\mu\nu\rho\sigma}$$


•
$$c_4^2 + \tilde{c}_4^2 = 1$$

$$ho$$
 $\Lambda \gtrsim 340 \; \mathrm{keV} \sim rac{1}{1 \; \mathrm{pm}} \quad (m_* \geq 5 \; \mathrm{TeV})$

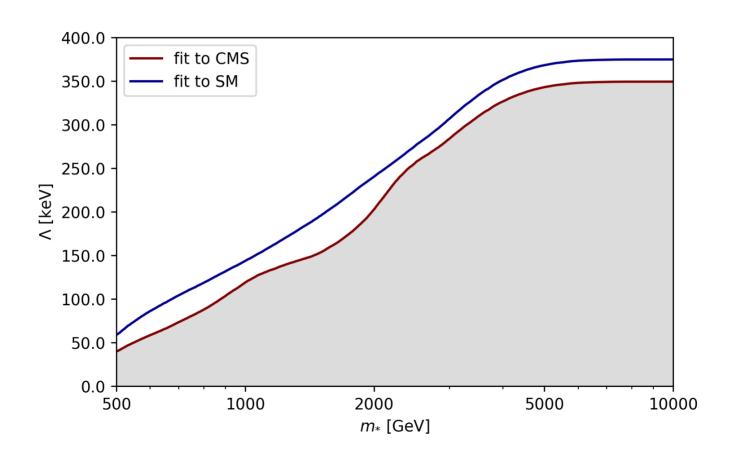
- Gravitational waves:
- $\Lambda \gtrsim \frac{1}{R_s} \sim \frac{1}{100 \text{ km}} \sim 10^{-12} \text{ eV}$ $\Lambda \gtrsim \frac{1}{d} \sim \frac{1}{50 \mu \text{m}} \sim 10^{-3} \text{ eV}$ Torsion:

EFT Validity

• Discard all events with $\sqrt{\hat{s}} \geq m_*$

$$\hat{s} = (p_g + p_h)^2 \ge (p_{T,\min,j} + p_{T,\min,h})^2 = (2E_{T,\min}^{\text{miss}})^2$$

Summary


- Test gravity in all possible ways
- Gravity coupled to the SM is parameterized in the GRSMEFT
- GRSMEFT is testable at the LHC
- ightharpoonup Bound on Λ of $\mathcal{O}(100~{\rm keV})$ from jet + MET searches for gravitational couplings to gluons

Outlook

- Other observables
- > Indirect tests

Backup

Bounds for $G^{\mu\nu}G^{\rho\sigma}C_{\mu\nu\rho\sigma}$ -type operators

