

Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos

Tuesday 22 September 2020 16:45 (13 minutes)

At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (Λ CDM), the Planck collaboration reports $\Sigma m_\nu < 0.12$ eV at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $\tau_\nu < t_U$, represent a particle physics avenue to relax cosmological neutrino mass constraints.

In this talk, based on ArXiv:2007.04994, I will review the cosmological evolution of neutrinos and show how decaying neutrinos can relax cosmological neutrino mass bounds. In addition, I will present a simple extension of the type I seesaw scenario in which neutrino decays can loosen the neutrino mass bounds up to $\Sigma m_\nu \sim 1$ eV, without spoiling the light neutrino mass generation mechanism. I will conclude by highlighting the role that unstable neutrinos can play in light of current and upcoming laboratory and cosmology experiments searching for the neutrino mass scale.

Authors: LOPEZ-PAVON, Jacobo (IFIC); ESCUDERO, Miguel (TUM); RIUS, Nuria (IFIC); SANDNER, Stefan (IFIC)

Presenter: ESCUDERO, Miguel (TUM)

Session Classification: Cosmology and Astroparticles session on Zoom and in Main Auditorium

Track Classification: Cosmology & Astroparticle Physics