Analytic Structure of Banana Amplitudes

Christoph Nega

Joint work with Kilian Bönisch, Fabian Fischbach, Albrecht Klemm \& Reza Safari
"The l-loop Banana Amplitude from GKZ Systems and relative Calabi-Yau Periods" [1912.06201]
"Analytic Structure of all Loop Banana Amplitudes" [2008.10574]

Motivation

Physical interest:

Scattering processes are calculated perturbatively through Feynman diagrams
Precision measurements require high loop calculations

three loop Higgs correction

kite diagram

banana diagram

Mathematical interest:

Appearance of special functions (elliptic Polylogarithms, iterated integrals, Bessel functions, ...)
$\rightarrow \quad$ Function space of Feynman integrals?

Algebraic and geometric structure behind Feynman integrals

Representations of Feynman Integrals

Representations of Feynman Integrals

Feynman Representation

Symanzik Representation

$$
\begin{aligned}
\mathcal{I} & =\int_{x_{k} \geq 0} \prod_{k=1}^{E} x_{k}^{\nu_{k}-1} \frac{\mathcal{U}^{\nu-(l+1) D / 2}}{\mathcal{F}^{\nu-l D / 2}} \mu_{l} \\
\mu_{l} & =\sum_{k=1}^{l+1}(-1)^{k+1} x_{k} \mathrm{~d} x_{1} \wedge \ldots \wedge \widehat{\mathrm{~d} x_{j}} \wedge \ldots \wedge \mathrm{~d} x_{l+1}
\end{aligned}
$$

Representations of Feynman Integrals

Feynman Representation

$$
\begin{aligned}
& \rightarrow \quad \mathcal{I} \sim \int_{\left(\mathbb{R}^{1, D-1}\right)^{l}} \frac{\prod_{k=1}^{l} \mathrm{~d}^{D} l_{k}}{\prod_{k=1}^{l}\left(q_{k}^{2}-\xi_{k}^{2}+i \epsilon\right)^{\nu_{k}}} \\
& \text { Symanzik Representation } \\
& \mathcal{I}=\int_{x_{k} \geq 0} \prod_{k=1}^{E} x_{k}^{\nu_{k}-1} \frac{\mathcal{U}^{\nu-(l+1) D / 2}}{\mathcal{F}^{\nu-l D / 2}} \mu_{l} \\
& \mu_{l}=\sum_{k=1}^{l+1}(-1)^{k+1} x_{k} \mathrm{~d} x_{1} \wedge \ldots \wedge \widehat{\mathrm{~d} x_{j}} \wedge \ldots \wedge \mathrm{~d} x_{l+1}
\end{aligned}
$$

Graph polynomials

- First Symanzik polynomial \mathcal{U}
- Second Symanzik polynomial \mathcal{F}
homogeneous polynomial of degree l in x_{i} No kinematic dependence
homogeneous polynomial of degree $l+1$ in x_{i} dependence on masses and momenta

Geometric Realization

$\ln D=2$ the banana diagram is given by:

$$
\longrightarrow \quad \mathcal{I}_{l}\left(t, \xi_{i}\right)=\int_{\sigma_{l}} \frac{\mathcal{U}^{0}}{\mathcal{F}^{1}} \mu_{l}=\int_{\sigma_{l}} \frac{\mu_{l}}{P_{\Delta_{l}}\left(t, \xi_{i} ; x_{i}\right) \prod_{k=1}^{l+1} x_{k}}
$$

$$
\begin{aligned}
& P_{\Delta_{l}}\left(t, \xi_{i} ; x_{i}\right):=\left(t-\left(\sum_{k=1}^{l+1} \xi_{k}^{2} x_{k}\right)\left(\sum_{k=1}^{l+1} \frac{1}{x_{k}}\right)\right) \\
& \sigma_{l}:=\left\{\left[x_{1}: \ldots: x_{l+1}\right] \in \mathbb{R P}^{l} \mid x_{i} \geq 0, \forall i\right\}
\end{aligned}
$$

Geometric Realization

$\ln D=2$ the banana diagram is given by:

$$
\longrightarrow \quad \mathcal{I}_{l}\left(t, \xi_{i}\right)=\int_{\sigma_{l}} \frac{\mathcal{U}^{0}}{\mathcal{F}^{1}} \mu_{l}=\int_{\sigma_{l}} \frac{\mu_{l}}{P_{\Delta_{l}}\left(t, \xi_{i} ; x_{i}\right) \prod_{k=1}^{l+1} x_{k}}
$$

$$
\begin{aligned}
& P_{\Delta_{l}}\left(t, \xi_{i} ; x_{i}\right):=\left(t-\left(\sum_{k=1}^{l+1} \xi_{k}^{2} x_{k}\right)\left(\sum_{k=1}^{l+1} \frac{1}{x_{k}}\right)\right) \\
& \sigma_{l}:=\left\{\left[x_{1}: \ldots: x_{l+1}\right] \in \mathbb{R P}^{l} \mid x_{i} \geq 0, \forall i\right\}
\end{aligned}
$$

1) Hypersurface in toric ambient space

$$
M_{l-1}=\left\{P_{\Delta_{l}}(x)=0 \mid x \in \mathbb{P}_{\hat{\Delta}_{l}}\right\}
$$

- Clear connection from differential to geometry
- Generic hypersurface constraint hast far too many parameters

2) Complete intersection model

$$
W_{l-1}=\left(\begin{array}{c||cc}
\mathbb{P}_{1}^{1} & 1 & 1 \\
\vdots & \vdots & \vdots \\
\mathbb{P}_{l+1}^{1} & 1 & 1
\end{array}\right) \subset\left(\begin{array}{c||c}
\mathbb{P}_{1}^{1} & 1 \\
\vdots & \vdots \\
\mathbb{P}_{l+1}^{1} & 1
\end{array}\right)=F_{l}
$$

- Hidden connection through maximal cut period
- Number of parameters fits to physical ones

Equal Mass Case: Operators

We set all masses to unity, i.e. $\xi_{i}=1$ for $i=1, \ldots, l+1$

Maximal cut integral

$$
\begin{array}{rlr}
\mathcal{T}_{T^{l}}(s) & =\int_{T^{l}} \frac{\mu_{l}}{\left(1 / s-\left(\sum_{k=1}^{l+1} \xi_{k}^{2} x_{k}\right)\left(\sum_{k=1}^{l+1} \frac{1}{x_{k}}\right)\right)} & s=1 / t \\
& \sim \sum_{n=0}^{\infty} s^{n+1} \sum_{|k|=n}\binom{n}{k_{1}, \ldots, k_{l+1}}^{2}=: \varpi_{0}(s) &
\end{array}
$$

Find differential operator annihilating maximal cut integral

Equal Mass Case: Operators

We set all masses to unity, i.e. $\xi_{i}=1$ for $i=1, \ldots, l+1$

Maximal cut integral

$$
\begin{array}{rlr}
\mathcal{T}_{T^{l}}(s) & =\int_{T^{l}} \frac{\mu_{l}}{\left(1 / s-\left(\sum_{k=1}^{l+1} \xi_{k}^{2} x_{k}\right)\left(\sum_{k=1}^{l+1} \frac{1}{x_{k}}\right)\right)} & s=1 / t \\
& \sim \sum_{n=0}^{\infty} s^{n+1} \sum_{|k|=n}\binom{n}{k_{1}, \ldots, k_{l+1}}^{2}=: \varpi_{0}(s)
\end{array}
$$

Find differential operator annihilating maximal cut integral

$$
\longrightarrow \quad \text { Set of solutions (almost) describe Feynman integral as linear combination }
$$

Observation: $\varpi_{0}(s)$ is double Borel sum of the $(l+1)$ th symmetric power of $\quad \sum_{k=0}^{\infty} \frac{1}{(k!)^{2}} z^{k}=I_{0}(2 \sqrt{z})$
$\longrightarrow \quad$ Get easily PF equations from this $\quad \mathcal{L}_{l} \mathcal{T}_{T^{l}}=0$
E.g. for $l=4$ we find: $\quad \mathcal{L}_{4}=1-5 s+(-4+28 s) \theta+\left(6-63 s+26 s^{2}-225 s^{3}\right) \theta^{2} \quad \theta=s \partial_{s}$

$$
+\left(-4+70 s-450 s^{3}\right) \theta^{3}-(-1+s)(-1+9 s)(-1+25 s) \theta^{4}
$$

Equal Mass Case: Operators

We set all masses to unity, i.e. $\xi_{i}=1$ for $i=1, \ldots, l+1$

Maximal cut integral

$$
\begin{array}{rlr}
\mathcal{T}_{T^{l}}(s) & =\int_{T^{l}} \frac{\mu_{l}}{\left(1 / s-\left(\sum_{k=1}^{l+1} \xi_{k}^{2} x_{k}\right)\left(\sum_{k=1}^{l+1} \frac{1}{x_{k}}\right)\right)} & s=1 / t \\
& \sim \sum_{n=0}^{\infty} s^{n+1} \sum_{|k|=n}\binom{n}{k_{1}, \ldots, k_{l+1}}^{2}=: \varpi_{0}(s)
\end{array}
$$

Find differential operator annihilating maximal cut integral
$\longrightarrow \quad$ Set of solutions (almost) describe Feynman integral as linear combination

Observation: $\varpi_{0}(s)$ is double Borel sum of the $(l+1)$ th symmetric power of $\quad \sum_{k=0}^{\infty} \frac{1}{(k!)^{2}} z^{k}=I_{0}(2 \sqrt{z})$
$\longrightarrow \quad$ Get easily PF equations from this $\quad \mathcal{L}_{l} \mathcal{T}_{T^{l}}=0$
E.g. for $l=4$ we find: $\quad \mathcal{L}_{4}=1-5 s+(-4+28 s) \theta+\left(6-63 s+26 s^{2}-225 s^{3}\right) \theta^{2} \quad \theta=s \partial_{s}$

$$
+\left(-4+70 s-450 s^{3}\right) \theta^{3}-(-1+s)(-1+9 s)(-1+25 s) \theta^{4}
$$

For full Feynman integral we get inhomogeneity
$\mathcal{L}_{l} \mathcal{F}_{\sigma_{l}}=S_{l}=-(l+1)!s$

Around the MUM point $s=0$ we have a local Frobenius basis of the form:

$$
\begin{aligned}
& \varpi_{k}=\sum_{j=0}^{k}\binom{k}{j} \log (s)^{j} \Sigma_{k-j} \quad \text { for } k=1, \ldots, l-1 \\
& \varpi_{l}=(-1)^{l+1}(l+1) \sum_{j=0}^{l}\binom{l}{j} \log (s)^{j} \Sigma_{l-j}
\end{aligned}
$$

Again for $l=4$ we have:

$$
\begin{aligned}
& \varpi_{0}=s+5 s^{2}++45 s^{3}+545 s^{4}+7885 s^{5}+\cdots \\
& \Sigma_{1}=8 s^{2}+100 s^{3}+\frac{4148}{3} s^{4}+\frac{64198}{3} s^{5}+\cdots \\
& \Sigma_{2}=2 s^{2}+\frac{197}{2} s^{3}+\frac{33637}{18} s^{4}+\frac{2402477}{72} s^{5}+\cdots \\
& \Sigma_{3}=-12 s^{2}-\frac{267}{2} s^{3}-\frac{19295}{18} s^{4}-\frac{933155}{144} s^{5}+\cdots \\
& \Sigma_{4}=1830 s^{3}+\frac{112720}{3} s^{4}+\frac{47200115}{72} s^{5}+\cdots
\end{aligned}
$$

Singularity structure of PF equation determines radius of convergence
\longrightarrow Discriminant: $\quad \Delta\left(\mathcal{L}_{l}\right)=s \prod_{j=0}^{\left\lfloor\frac{l+1}{2}\right\rfloor}\left(1-s(l+1-2 j)^{2}\right)$
Moduli space: $\quad \mathbb{P}^{1} \backslash\left(\bigcup_{j=0}^{\left\lfloor\frac{l+1}{2}\right\rfloor}\left\{\frac{1}{(l+1-2 j)^{2}}\right\} \cup\{0\} \cup\{\infty\}\right)$

Equal Mass Case: λ-Coefficients and $\widehat{\Gamma}$-Conjecture

Actual Feynman integral as linear combination of Frobenius basis:

$$
\mathcal{F}_{\sigma_{l}}=\sum_{k} \lambda_{k}^{(l), l o c} \varpi_{k}^{l o c} \quad \text { with } \lambda_{k}^{(l), l o c} \in \mathbb{C}
$$

Numerical computation of $\mathcal{F}_{\sigma_{l}}$ yields λ-coefficients (Bessel function representation, analytic continuation)

We could guess their analytic form ($l \leq 20, \sim 300$ digits), e.g. for $l=4$ around the MUM point $s=0$:

$$
\begin{array}{ll}
\lambda_{0}^{(4)}=-450 \zeta(4)-i \pi \cdot 80 \zeta(3) & \lambda_{1}^{(4)}=80 \zeta(3)-i \pi \cdot 120 \zeta(2) \\
\lambda_{2}^{(4)}=180 \zeta(2) & \lambda_{3}^{(4)}=i \pi \cdot 20
\end{array}
$$

Equal Mass Case: λ-Coefficients and $\widehat{\Gamma}$-Conjecture

Actual Feynman integral as linear combination of Frobenius basis:

$$
\mathcal{F}_{\sigma_{l}}=\sum_{k} \lambda_{k}^{(l), l o c} \varpi_{k}^{l o c} \quad \text { with } \lambda_{k}^{(l), l o c} \in \mathbb{C}
$$

Numerical computation of $\mathcal{F}_{\sigma_{l}}$ yields λ-coefficients (Bessel function representation, analytic continuation)

We could guess their analytic form ($l \leq 20, \sim 300$ digits), e.g. for $l=4$ around the MUM point $s=0$:

$$
\begin{aligned}
& \lambda_{0}^{(4)}=-450 \zeta(4)-i \pi \cdot 80 \zeta(3) \\
& \lambda_{2}^{(4)}=180 \zeta(2)
\end{aligned}
$$

$$
\lambda_{1}^{(4)}=80 \zeta(3)-i \pi \cdot 120 \zeta(2)
$$

$$
\lambda_{3}^{(4)}=i \pi \cdot 20
$$

Actually, we find a generating functional for it:

$$
\sum_{l=0}^{\infty} \lambda_{0}^{(l)} \frac{x^{l}}{(l+1)!}=-\frac{\Gamma(1-x)}{\Gamma(1+x)} e^{-2 \gamma x+i \pi x} \quad \text { and } \quad \lambda_{k}^{(l)}=(-1)^{k}\binom{l+1}{k} \lambda_{0}^{(l-k)}
$$

Geometric argument/interpretation of it?
\longrightarrow

$$
\operatorname{Im}\left(\mathcal{F}_{\sigma_{l}}\right)=\int_{W_{l-1}} \mathrm{e}^{\omega \cdot \mathrm{t}} \widehat{\Gamma}\left(T W_{l-1}\right)+\mathcal{O}\left(\mathrm{e}^{\mathrm{t}}\right) \quad \text { and } \quad \operatorname{Re}\left(\mathcal{F}_{\sigma_{l}}\right)=\int_{F_{l}} \mathrm{e}^{\omega \cdot \mathrm{t}} \widehat{\Gamma}\left(1-c_{1}\right)^{2} \frac{\sin \left(2 \pi c_{1}\right)}{2 \pi c_{1}}+\mathcal{O}\left(\mathrm{e}^{\mathrm{t}}\right)
$$

Mirror map: $\mathfrak{t}=\frac{1}{2 \pi i} \frac{\varpi_{1}}{\varpi_{0}}$

Non Equal Mass Case

Similar structure as in equal mass case:

- (inhomogeneous) PF equations computed from GKZ method

$$
\mathcal{L}_{l}, S_{l} \quad \longrightarrow \quad \mathcal{D} \text {-modul }\left\{\mathcal{D}_{l}^{(k)}\right\} \text {, inhomogeneities }\left\{S_{l}^{(k)}\right\}
$$

- Larger Frobenius basis (logarithmic solutions split)

```
\varpi}k\mp@code{\longrightarrow}\mp@subsup{\varpi}{k}{s}\mathrm{ for }s=1,\ldots\mathrm{ (primitive vertical Hodge numbers)
```

- symmetric splitting of λ-coefficients

$\lambda_{r, s}^{(l)} \quad\left(" \sim \lambda_{k}^{(l)} /\right.$ Hodge/komb")

Computed explicitly the non equal mass banana Feynman integral up to $l \leq 4$

Conclusions

Found full analytic structure of l-loop banana Feynman integrals

- Equal mass case explicitly for $l \leq 20$ and general results
- Non equal mass case explicitly for $l \leq 4$ and understanding of splitting
$\widehat{\Gamma}$-conjecture allows to proof mathematically our results (Iritani)

Guiding principle: Search for associated CY motive of Feynman graph
$\longrightarrow \quad$ whole machinery from algebraic geometry, number theory

Possible extension to other Feynman graphs

- Extension to other CY period integrals (traintracks, ice cream cone, kite, ...)
- General non CY graphs? What structure survives? Underlying motive?

Thank you for your attention

