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Motivation

2

MathemaIcal interest:

FuncIon space of Feynman integrals?

Algebraic and geometric structure behind Feynman integrals

Appearance of special funcIons (ellipIc Polylogarithms,  
iterated integrals, Bessel funcIons, …)

ProjecIve varieIes, moIves, 

period integrals, -class 
conjecture, …

b�

Precision measurements require high loop calculaIons

ScaVering processes are calculated perturbaIvely through Feynman diagrams

Physical interest:
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Figure 1: The l-loop banana diagram with external momentum K and internal masses Mi.

A concrete problem of this kind is defined by the class of Feynman integrals associated
with so-called banana graphs that will be considered in the present work (see Figure 1).
Part of their practical relevance comes from the fact that banana type graphs often ap-
pear as a subtopology of more complicated (more realistic) Feynman graphs, i.e., they are
obtained by contracting a suitable subset of internal lines. To understand this, first note
that, after suitable tensor and Dirac algebra manipulations in the numerator of a given
Feynman integral (say involving fermion or gauge boson propagators), the problem can
generically be reduced to the computation of a set of scalar Feynman integrals, possibly
with non-trivial but scalar numerator (in momentum space). Now scalar Feynman inte-
grals often satisfy integration-by-parts identities [1, 2]1 (IBP) which allow to further reduce
to a smaller (finite) number of integrals, commonly called master integrals of the respec-
tive problem. Typically the latter are Feynman integrals associated with subtopologies in
the above sense and in this way banana type integrals2 frequently arise — for instance
as master integrals in two-loop electro-weak computations [6], in the two-loop Higgs+jet
production cross section [7], in three-loop corrections to the fl-parameter [8] or at four-loop
order in the anomalous magnetic moment of the electron [9]. Another example is the

b t

Figure 2: A three loop contribution to Higgs production via gluon fusion with a bottom and a top quark
running in the loops (left panel). The scalar kite Feynman graph with two massless and three propapagators
of equal mass (right panel).

so-called kite integral (see Figure 2), which gives a contribution to the two-loop electron
self-energy. The subtopologies in this example sit in the inhomogeneous term of its first
order di�erential equation [10]. More generally, the kite family with arbitrary powers of the
respective propagators has a set of eight master integrals that satisfy a first-order Fuchsian
di�erential system in the momentum parameter. Here two massive two-loop banana type
integrals, once with primitive powers of the propagators and once with a propagator raised

1These identities are reviewed in for example [3–5].
2Here the banana type integrals may have propagator powers ‹i di�erent from unity, in which case one

assignes a Feynman graph with ‹k ≠ 1 dots on the kth propagator.
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Representations of Feynman Integrals
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: # propagators E l + 1

: # verIcesv 2

: # loopsl l

: # powers  
propagators

⌫k 1 or higher

t t
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⌫ =
X
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Feynman rules

graph theory

. . .

Feynman RepresentaIon

Symanzik RepresentaIon

I =

Z

xk�0

EY

k=1

x⌫k�1
k

U⌫�(l+1)D/2

F⌫�lD/2
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k=1(q

2
k � ⇠2k + i✏)⌫k



Representations of Feynman Integrals
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Graph polynomials

๏ First Symanzik polynomial  U homogeneous polynomial of degree  in  
No kinemaIc dependence

l xi

๏ Second Symanzik polynomial F homogeneous polynomial of degree  in  
dependence on masses and momenta

l + 1 xi
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Geometric Realization
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In  the banana diagram is given by:D = 2

t t
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Il(t, ⇠i) =
Z

�l

U0

F1
µl =

Z
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xk
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Geometric Realization

4

1) Hypersurface in toric ambient space 2) Complete intersecIon model 

๏ Clear connecIon from differenIal to geometry 

๏ Generic hypersurface constraint hast far too many parameters

Subslice problem

๏ DifferenIal equaIons for periods "for free"

Ml�1 = {P�l(x) = 0|x 2 P�̂l
} Wl�1 =

0

B@
P1
1
...

P1
l+1

�������

�������

1 1
...

...
1 1

1

CA ⇢

0

B@
P1
1
...

P1
l+1

�������

�������

1
...
1

1

CA = Fl

๏ Hidden connecIon through maximal cut period

๏ Number of parameters fits to physical ones

๏ DifferenIal equaIons for periods "for free"

In  the banana diagram is given by:D = 2
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Equal Mass Case: Operators
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We set all masses to unity, i.e.                for  

Maximal cut integral TT l(s) =

Z

T l

µl⇣
1/s�

⇣Pl+1
k=1 ⇠

2
kxk

⌘⇣Pl+1
k=1

1
xk

⌘⌘

⇠
1X

n=0

sn+1
X

|k|=n

✓
n

k1, . . . , kl+1

◆2

=: $0(s)

Find differenIal operator annihilaIng maximal cut integral

Set of soluIons (almost) describe Feynman integral as linear combinaIon

s = 1/t

⇠i = 1 i = 1, . . . , l + 1
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s = 1/t

⇠i = 1 i = 1, . . . , l + 1

ObservaIon:             is double Borel sum of the             th symmetric power of 

Get easily PF equaIons from this

L4 = 1� 5s+ (�4 + 28s)✓ +
�
6� 63s+ 26s2 � 225s3

�
✓2

+
�
�4 + 70s� 450s3
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Equal Mass Case: Operators
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For full Feynman integral we get inhomogeneity LlF�l = Sl = �(l + 1)! s
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Equal Mass Case: Local Solutions
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Around the MUM point  we have a 
local Frobenius basis of the form:

s = 0

$k =
kX

j=0

✓
k

j

◆
log(s)j ⌃k�j for k = 1, . . . , l � 1

$l = (�1)l+1(l + 1)
lX

j=0

✓
l

j

◆
log(s)j ⌃l�j

$0 = s+ 5s2 ++45s3 + 545s4 + 7885s5 + · · ·

⌃1 = 8s2 + 100s3 +
4148

3
s4 +

64 198

3
s5 + · · ·

⌃2 = 2s2 +
197

2
s3 +

33 637

18
s4 +

2402 477

72
s5 + · · ·

⌃3 = �12s2 � 267

2
s3 � 19 295

18
s4 � 933 155

144
s5 + · · ·

⌃4 = 1830s3 +
112 720

3
s4 +

47 200 115

72
s5 + · · ·

Again for  we have:l = 4

Singularity structure of PF equaIon determines radius of convergence

Discriminant: �(Ll) = s

b l+1
2 cY
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�
1� s(l + 1� 2j)2

�

Moduli space:
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(l+1)2

sing. point

s = 1
(l�1)2

sing. point

· · ·
s = 1

sing. point

rBI

P1 \

0

@
b l+1

2 c[
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⇢
1

(l + 1� 2j)2

�
[ {0} [ {1}
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Equal Mass Case:     -Coefficients and    -Conjecture
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� b�

Actual Feynman integral as linear combinaIon of Frobenius basis: 

F�l =
X

k

�(l), loc
k $loc

k with �(l), loc
k 2 C

Numerical computaIon of         yields -coefficients (Bessel funcIon representaIon, analyIc conInuaIon)�

We could guess their analyIc form (            ,  digits), e.g. for  around the MUM point :⇠ 300 l = 4 s = 0

�(4)
0 = �450⇣(4)� i⇡ · 80⇣(3) �(4)

1 = 80⇣(3)� i⇡ · 120⇣(2)

�(4)
2 = 180⇣(2) �(4)

3 = i⇡ · 20

F�l

l  20
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Actually, we find a generaIng funcIonal for it:

1X

l=0

�(l)
0

xl

(l + 1)!
= ��(1� x)

�(1 + x)
e�2�x+i⇡x and �(l)

k = (�1)k
✓
l + 1

k

◆
�(l�k)
0

Geometric argument/interpretaIon of it? Yes! They follow from a (modified) -conjectureb�

and

Mirror map:

Im(F�l) =

Z

Wl�1

e!·t b�(TWl�1) +O(et) Re(F�l) =

Z

Fl

e!·t b�(1� c1)
2 sin(2⇡c1)

2⇡c1
+O(et)

t =
1

2⇡i

$1

$0



Non Equal Mass Case
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Similar structure as in equal mass case:

๏ (inhomogeneous) PF equaIons computed from GKZ method 

๏ Larger Frobenius basis (logarithmic soluIons split)  

๏ symmetric splikng of -coefficients�

Ll, Sl

$k        for                    (primiIve verIcal Hodge numbers)

�(l)
k              (                                            )

Computed explicitly the non equal mass banana Feynman integral up to 

8

“ ⇠ �(l)
k /Hodge/komb”�(l)

r,s

l  4

s = 1, . . .$s
k

{D(k)
l }-modul              , inhomogeneiIes D {S(k)

l }



Conclusions
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Found full analyIc structure of -loop banana Feynman integralsl

-conjecture allows to proof mathemaIcally our results (Iritani)b�

Possible extension to other Feynman graphs

๏ Extension to other CY period integrals (traintracks, ice cream cone, kite, …) 

๏ General non CY graphs? What structure survives? Underlying moIve?

Guiding principle: Search for associated CY moIve of Feynman graph

whole machinery from algebraic geometry, number theory

9

๏ Equal mass case explicitly for                and general results 

๏ Non equal mass case explicitly for            and understanding of splikng

l  20

l  4
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